线性代数基础 | 向量空间和线性变换

向量空间和线性变换是线性代数中最基本的概念之一,也是许多数学分支和应用领域中不可或缺的数学工具。在工程和科学领域,线性代数被广泛用于处理大量数据和解决实际问题。以下是向量空间和线性变换的一些重要应用:

  1. 机器学习:在机器学习中,向量和矩阵是最基本的数据表示形式之一。许多机器学习算法都利用了向量和矩阵的性质,例如矩阵分解、主成分分析和推荐系统等。
  2. 图形学:向量空间和线性变换被广泛应用于图形学中,用于描述和变换二维和三维图形。
  3. 信号处理:在信号处理中,向量和矩阵被用于表示信号、滤波和处理。
  4. 物理学:在物理学中,向量和矩阵被用于描述力学、电磁学、量子力学等。
  5. 经济学:在经济学中,向量空间和线性变换被用于建立数学模型和分析经济数据。

一、向量空间

A. 向量空间的定义

向量空间是指一个集合V以及两种运算:向量的加法和标量与向量的乘法,满足以下8个公理:

  1. 加法结合律:对于任意的u, v, w∈V,有(u+v)+w=u+(v+w)。
  2. 加法交换律:对于任意的u, v∈V,有u+v=v+u。
  3. 加法单位元素:存在一个元素0∈V,对于任意的u∈V,有u+0=u。
  4. 加法逆元素:对于任意的u∈V,存在一个元素-u∈V,使得u+(-u)=0。
  5. 标量乘法结合律:对于任意的a, b∈R和u∈V,有a(bu)=(ab)u。
  6. 向量乘法分配律:对于任意的a∈R和u, v∈V,有a(u+v)=au+av。
  7. 标量乘法分配律:对于任意的a, b∈R和u∈V,有(a+b)u=au+bu。
  8. 标量乘法单位元素:对于任意的u∈V,有1u=u。

其中,R表示实数域。

简单来说,向量空间就是满足这些公理的一组向量的集合,它具有向量加法、标量乘法等运算,可以进行向量的线性组合、线性变换等操作。向量空间可以是有限维的,也可以是无限维的。

B. 向量空间的基本性质

向量空间具有以下基本性质:

  1. 加法交换律和结合律:向量加法满足交换律和结合律。
  2. 零向量:向量空间中存在一个元素0,称为零向量,使得对于任意向量v,有v+0=v。
  3. 加法逆元:对于向量空间中任意向量v,存在一个加法逆元素-v,使得v+(-v)=0。
  4. 标量乘法分配律和结合律:标量乘法满足分配律和结合律。
  5. 标量乘法单位元素:存在一个标量1,使得对于任意向量v,有1v=v。
  6. 基本向量和向量线性组合:向量空间中任意向量可以由一组基本向量线性组合而成,即任意向量v可以表示为v=a1v1+a2v2+…+anvn,其中a1, a2, …, an为标量,v1, v2, …, vn为一组基本向量。
  7. 基的唯一性:向量空间中任意两组基的向量个数相同。
  8. 维数的唯一性:向量空间的维数是指它的一组基的向量个数,对于同一向量空间,维数唯一。

这些基本性质是向量空间的基础,使得我们可以进行向量的线性组合、线性变换等操作,并且具有可重复性和可扩展性。在实际应用中,这些性质可以帮助我们更好地理解和分析向量空间中的问题。

C. 向量空间的子空间

向量空间的子空间指的是一个向量空间的子集,它同样是一个向量空间。具体来说,一个非空子集W是向量空间V的子空间,当且仅当:

  1. 零向量0∈W。
  2. 对于任意u,v∈W,有u+v∈W。
  3. 对于任意u∈W和任意标量a,有au∈W。

直观上,子空间是向量空间的一部分,其中的向量仍然可以进行加法和数乘运算,因此子空间仍然是向量空间。例如,三维空间中的任意一个平面都是一个二维向量空间的子空间。子空间在向量空间的理论和应用中有重要作用,例如可以用子空间来描述数据的特征空间,进行数据降维和压缩,还可以用子空间来描述线性方程组的解空间。

D. 向量空间的基和维数

向量空间的基是一个线性无关的向量组,它可以生成整个向量空间中的任意向量。具体来说,如果一个向量组{v1, v2, …, vn}满足以下两个条件:

  1. {v1, v2, …, vn}线性无关;
  2. 向量空间V中的任意向量都可以表示成a1v1 + a2v2 + … + anvn的形式;

那么{v1, v2, …, vn}就是向量空间V的一个基。

一个向量空间的维数是它的基的向量个数,用dim(V)表示。基的向量个数是唯一的,因此向量空间的维数也是唯一的。例如,三维空间的标准基向量组{(1,0,0),(0,1,0),(0,0,1)}可以生成整个三维空间,因此三维空间的维数是3。

维数的概念在向量空间的理论和应用中有广泛的应用。例如,矩阵的秩可以用维数来描述,向量空间的维数可以用于描述数据的特征维度,还可以用于描述线性方程组的解空间的维数。

E. 向量空间的坐标系

向量空间的坐标系是指将向量空间中的向量表示成一组有序数的方法。在向量空间的坐标系中,每个向量都可以表示为一组有序数,这些数称为坐标。坐标的个数等于向量空间的维数,因为维数是基的向量个数,每个向量都可以由基线性组合得到,而每个基向量对应一个坐标。

具体来说,设{v1, v2, …, vn}是向量空间V的一组基,对于V中的任意向量v,都可以表示为:v = a1v1 + a2v2 + … + anvn,其中a1, a2, …, an是标量。我们可以将这些标量按照基向量的顺序排列,形成一个列向量:

[x1]
[x2]
[…]
[xn]

这个列向量就是向量v在基{v1, v2, …, vn}下的坐标向量,记为[x]。

向量空间的不同基可以得到不同的坐标系,但是同一向量在不同基下的坐标是有联系的,这种联系通过矩阵的相似变换来描述。

在机器学习中,向量空间的坐标系通常是用来表示数据的特征向量的。数据的每个特征可以看作是向量空间中的一个坐标轴,而特征向量的坐标就是特征的值。通过坐标系,我们可以将不同的数据表示为向量,并在向量空间中进行各种操作,如聚类、分类、降维等。

二、线性变换

A. 线性变换的定义

线性变换是指一个向量空间上的映射,满足两个条件:

  1. 加法保持性质:对于向量空间V中的任意两个向量u和v,有T(u+v) = T(u) + T(v)。
  2. 数乘保持性质:对于向量空间V中的任意向量u和任意标量a,有T(au) = aT(u)。

其中,T表示线性变换。可以看出,线性变换保持向量空间中向量的加法和数乘运算,因此也被称为保持运算的变换。

B. 线性变换的基本性质

线性变换有很多基本性质,下面列举其中的一些:

  1. 线性变换将零向量映射为零向量:对于线性变换T,有T(0) = 0。
  2. 线性变换将向量的线性组合映射为其线性组合的映射:对于线性变换T和向量空间V中的任意向量u和v以及标量a和b,有T(au+bv) = aT(u) + bT(v)。
  3. 线性变换将向量的加法映射为其加法的映射:对于线性变换T和向量空间V中的任意两个向量u和v,有T(u+v) = T(u) + T(v)。
  4. 线性变换的复合是线性变换:对于线性变换T1和T2,它们的复合T2∘T1也是一个线性变换。
  5. 线性变换的矩阵表示与基变换矩阵的乘积等价:设T是线性变换,B是V的一个基,P是由B中向量按列排成的矩阵,则T(x)在基B下的坐标矩阵等于P的逆乘以T在基B下的坐标矩阵。
  6. 对于同一个向量空间V,如果有两个不同的基B和B’,那么它们对应的基变换矩阵P和P’是可逆的,并且P’ = P^-1。
C. 线性变换的矩阵表示

在给定基下,每个线性变换 T T T 都可以表示为一个矩阵 A A A。具体来说,设 T T T 是从 V V V W W W 的线性变换, β = { v 1 , v 2 , ⋯   , v n } \beta = \{\boldsymbol{v}_1,\boldsymbol{v}_2,\cdots,\boldsymbol{v}_n\} β={ v1,v2,,vn} γ = { w 1 , w 2 , ⋯   , w m } \gamma = \{\boldsymbol{w}_1,\boldsymbol{w}_2,\cdots,\boldsymbol{w}_m\} γ={ w1,w2,,wm} 分别是 V V V W W W 的有序基,且 v \boldsymbol{v} v V V V 中的任意向量, w \boldsymbol{w} w W W W 中的任意向量,则 T T T 在基 β \beta

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值