bzoj2594水管局长数据加强版题解

  • 题目大意
    给一张带权无向图,无重边和自环,有如下操作:
    删除某条边,保证这条边在删除前一定存在,并且不破坏原图连通性;
    询问两点之间所有路径中最小权值的最大值是多少;

  • 题解
    问题的答案显然在原图的最小生成树上,于是本题就变成了动态维护删边最小生成树。
    然而LinkCutTree维护最小生成树时并不支持删边操作,所以要离线处理,先删掉该删掉的边,再求最小生成树,把所有操作倒过来用LCT维护。

如何用LCT维护动态添边最小生成树

  • 设原图中有n个点,m条边;
    把每条边视为一个点,编号为n+1,n+2,,n+m,权值为其边权,初始化边权最大值为自己的边权;
    把原图中每个点的权值设成0;
    LCT要维护每个点的编号、权值和每条实链上权值最大的点;

  • 求最小生成树,每添一条边时,设这条边连接x和y,这条边编号为k。直接把x和k连起来,y和k也连起来。

  • 若查询x到y路径上的最大边权,只需要把x置为根,对y进行access操作,和splay操作,返回y所在实链上权值最大的点即可。LCT上权值不为0的点一定是原图中的边。

  • 每添一条边,查询这条边所连的两个结点路径上权值最大的边,若当前最大边的边权比新加入的还大,则断开当前最大边,把新边加入LCT中。

  • Code

#include <cstdio>
#include <algorithm>
#include <cstring>
#define maxn 100005
#define maxm 1000005
#define nil T[0]
using namespace std;
int n, m, q;

struct edge
{
    bool del;
    int id, x, y, w;
    edge(bool del = false, int id = 0, int x = 0, int y = 0, int w = 0) :
        id(id), x(x), y(y), w(w) {}
}E[maxm];
bool cmpw(const edge &a, const edge &b)
{
    return a.w < b.w;
}
bool cmpdic(const edge &a, const edge &b)
{
    return a.x < b.x || (a.x == b.x && a.y < b.y);
}
bool cmpid(const edge &a, const edge &b)
{
    return a.id < b.id;
}



struct node *T[maxm + maxn + maxn], *S[maxm + maxn + maxn];
struct node
{
    bool rev;
    int id, val;
    node *fa, *lc, *rc, *mx;
    node(bool rev = false, int id = 0, int val = 0,
         node *fa = nil, node *lc = nil, node *rc = nil, node *mx = nil)
    :    rev(rev), id(id), val(val),
         fa(fa), lc(lc), rc(rc), mx(mx) {}
    inline void update()
    {
        mx = this;
        if(lc -> mx -> val > mx -> val) mx = lc -> mx;
        if(rc -> mx -> val > mx -> val) mx = rc -> mx;
    }
    inline void pushdown()
    {
        if(rev)
        {
            rev = false;
            lc -> rev ^= 1; rc -> rev ^= 1;
            swap(lc, rc);
        }
    }
};
void zig(node *x)
{
    node *y = x -> fa;
    y -> lc = x -> rc;
    x -> rc -> fa = y;
    x -> rc = y;
    x -> fa = y -> fa;
    if(y == y -> fa -> lc) y -> fa -> lc = x;
    else if(y == y -> fa -> rc) y -> fa -> rc = x;
    y -> fa = x;
    y -> update();
}
void zag(node *x)
{
    node *y = x -> fa;
    y -> rc = x -> lc;
    x -> lc -> fa = y;
    x -> lc = y;
    x -> fa = y -> fa;
    if(y == y -> fa -> lc) y -> fa -> lc = x;
    else if(y == y -> fa -> rc) y -> fa -> rc = x;
    y -> fa = x;
    y -> update();
}
void splay(node *x)
{
    int top = 0;
    S[top++] = x;
    for(node *i = x; i == i -> fa -> lc || i == i -> fa -> rc; i = i -> fa)
    {
        S[top++] = i -> fa;
    }
    while(top--) S[top] -> pushdown();
    node *y = nil, *z = nil;
    while(x == x -> fa -> lc || x == x -> fa -> rc)
    {
        y = x -> fa; z = y -> fa;
        if(x == y -> lc)
        {
            if(y == z -> lc) zig(y);
            zig(x);
        }
        else
        {
            if(y == z -> rc) zag(y);
            zag(x);
        }
    }
    x -> update();
}
inline void access(node *x)
{
    for(node *y = nil; x != nil; y = x, x = x -> fa)
    {
        splay(x);
        x -> rc = y;
        x -> update();
    }
}
inline void makeroot(node *x)
{
    access(x); splay(x); x -> rev ^= 1;
}
inline void lnk(node *x, node *y)
{
    makeroot(x);
    x -> fa = y;
}
inline void cut(node *x, node *y)
{
    makeroot(x);
    access(y); splay(y);
    x -> fa = y -> lc = nil;
    y -> update();
}
inline node* query(node *x, node *y)
{
    makeroot(x);
    access(y); splay(y);
    return y -> mx;
}



int ufs[maxn];
inline int find(int x) { return x == ufs[x] ? x : find(ufs[x]); }

int find(int x, int y)
{
    int l = 1, r = m, mid;
    while(l <= r)
    {
        mid = l + r >> 1;
        if(E[mid].x < x || (E[mid].x == x && E[mid].y < y)) l = mid + 1;
        else if(E[mid].x == x && E[mid].y == y) return mid;
        else r = mid - 1;
    }
}

struct opt
{
    int id, k, x, y, ans;
    opt(int id = 0, int k = 0, int x = 0, int y = 0, int ans = 0) :
        id(id), k(k), x(x), y(y), ans(ans) {}
} sta[maxn];


inline void read(int &a)
{
    char ch = getchar();
    a = 0;
    while(ch < '0' || ch > '9') ch = getchar();
    while(ch >= '0' && ch <= '9')
    {
        a = a * 10 + ch - 48;
        ch = getchar();
    }
}
inline void write(int a)
{
    int top = 0, ch[30];
    do
    {
        ch[top++] = a % 10 + 48;
        a /= 10;
    } while(a > 0);
    while(top--) putchar(ch[top]);
    putchar('\n');
}
void init()
{
#ifndef ONLINE_JUDGE
    freopen("2594i.txt", "r", stdin);
    freopen("2594o.txt", "w", stdout);
#endif
    int a, b, c;
    read(n); read(m); read(q);
    nil = new node(); *nil = node();
    for(int i = 1; i <= n + m + 100; ++i) T[i] = new node(false, i);
    for(int i = 1; i <= n; ++i) ufs[i] = i;
    for(int i = 1; i <= m; ++i)
    {
        scanf("%d%d%d", &E[i].x, &E[i].y, &E[i].w);
        if(E[i].x > E[i].y) swap(E[i].x, E[i].y);
    }
    sort(E + 1, E + m + 1, cmpw);
    for(int i = 1; i <= m; ++i)
    {
        E[i].id = i;
        T[n + i] -> val = E[i].w;
        T[n + i] -> mx = T[n + i];
    }
    sort(E + 1, E + m + 1, cmpdic);
    for(int i = 1; i <= q; ++i)
    {
        read(sta[i].k); read(sta[i].x); read(sta[i].y);
        if(sta[i].k == 2)
        {
            if(sta[i].x > sta[i].y) swap(sta[i].x, sta[i].y);
            int tmp = find(sta[i].x, sta[i].y);
            E[tmp].del = true; sta[i].id = E[tmp].id;
        }
    }
    sort(E + 1, E + m + 1, cmpid);
}
void work()
{
    for(int i = 1, tot = 0; i <= m && tot < n - 1; ++i)
    {
        if(!E[i].del)
        {
            int tmpu = find(E[i].x), tmpv = find(E[i].y);
            if(tmpu != tmpv)
            {
                ufs[tmpu] = tmpv;
                lnk(T[E[i].x], T[i + n]);
                lnk(T[E[i].y], T[i + n]);
                ++tot;
            }
       }
    }
    for(int i = q; i > 0; --i)
    {
        if(sta[i].k == 1)
        {
            node *p = query(T[sta[i].x], T[sta[i].y]);
            sta[i].ans = p -> val;
        }
        else
        {
            node *p = query(T[sta[i].x], T[sta[i].y]);
            if(E[sta[i].id].w < p -> val)
            {
                cut(T[E[p -> id - n].x], p);
                cut(T[E[p -> id - n].y], p);
                lnk(T[sta[i].x], T[sta[i].id + n]);
                lnk(T[sta[i].y], T[sta[i].id + n]);
            }
        }
    }
    for(int i = 1; i <= q; ++i) if(sta[i].k == 1)
    {
        write(sta[i].ans);
    }
    for(int i = 0; i <= n + m + 100; ++i)
    {
        delete T[i];
        T[i] = NULL;
    }
}
int main()
{
    init();
    work();
    return 0;
}
阅读更多
换一批

没有更多推荐了,返回首页