自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(517)
  • 资源 (7)
  • 问答 (1)
  • 收藏
  • 关注

原创 坐标系变换中的偏导数关系分析与验证

/ 定义3x3矩阵类型// 矩阵乘法i < 3;k++) {// 矩阵与向量乘法i < 3;j++) {// 定义3D向量类型。

2025-08-29 08:54:32 697

原创 隐式曲面坐标变换下的偏导数关系

在几何处理与计算机图形学中,经常需要对隐式曲面进行坐标变换。设原始隐式曲面由函数F1​xyz定义,通过旋转和平移变换后得到新的隐式曲面F2​。⎝⎛​xyz​⎠⎞​R⎝⎛​x′y′z′​⎠⎞​t其中R是旋转矩阵(满足RTRI),ttx​ty​tz​T是平移向量。

2025-08-29 08:53:46 729

原创 Sympy 中多变量方程的极限条件求解

定义所有符号变量# 建立假设的方程形式print("原始方程:")

2025-08-29 08:53:23 707

原创 Open Cascade B样条插值曲面创建:从理论到实践

Open Cascade提供了类用于B样条曲面插值。这个类封装了插值算法,可以处理规则网格点数据。

2025-08-28 12:30:08 1192

原创 SymPy 与 NumPy 混合编程:解决矩阵类型转换与数学函数兼容性问题

在使用时,必须注意输入值必须在定义域−11[-1, 1]−11arcsin⁡x的定义域是x∈−11\arcsin(x) \text{ 的定义域是 } x \in [-1, 1]arcsinx的定义域是x∈−11对于超出定义域的值,NumPy 会返回nan# 创建包含边界值的矩阵[sp.Float(-1.0), sp.Float(0.0)], # 有效值[sp.Float(1.5), sp.Float(1.0)] # 1.5 超出定义域])

2025-08-27 22:46:56 889

原创 Pandas DataFrame 列数操作完全指南

在数据分析工作中,准确获取和操作 DataFrame 的列数是常见需求。本文将深入探讨 pandas DataFrame 列数的各种操作方法。

2025-08-27 22:45:48 587

原创 求解三角方程 B 1 ​ sinψ+B 2 ​ cosψ+B 3 ​ =0在区间 [π/2,3π/2]内的解

该方程在物理学和工程学中有广泛应用,特别是在处理包含相位差的振动系统、信号处理和控制系统分析中。通过上述 Python 实现,可以有效地求解这类三角方程,并进行可视化验证和数值精度控制。这是一个包含正弦和余弦函数的线性组合方程,可以通过三角恒等变换求解。(通常为 0 或 1),使得解落在指定区间。是四象限反正切函数。

2025-08-27 09:01:45 473

原创 基于不同插值方法的导数估计精度对比分析

设置随机种子确保结果可重现# 定义原始函数及其导数"""复合测试函数:包含周期性和线性趋势""""""原始函数的解析导数"""# 生成高分辨率原始数据用于对比# 生成带噪声的采样点print(f"采样点数量:len。

2025-08-26 09:21:50 1226

原创 B样条基函数:从数学原理到Python实现

Ni0u1若ui≤uui10否则1 & \text{若 } u_i \leq u < u_{i+1} \\0 & \text{否则}Ni0​u10​若ui​≤uui1​否则​。

2025-08-25 20:32:41 769

原创 曲面法向量的数学推导与 SymPy 实现

设曲面由方程Fxyz0Fxyz0定义,其中FFF是一个连续可微的函数。曲面在点P0x0y0z0P0​x0​y0​z0​处的法向量定义为与该点处切平面垂直的向量。

2025-08-25 20:23:47 813

原创 从文本树到结构化路径:解析有限元项目架构的自动化之道

的框架,其设计不仅依赖于坚实的数学基础,更需要清晰、可维护的代码结构。当我们面对一段以树形结构呈现的项目目录描述时,如何从中自动提取出所有文件与文件夹的完整路径,不仅是一项实用的工程任务,更是一次对代码组织逻辑与自动化思维的深入探索。在科学计算日益复杂的今天,掌握这类“元操作”能力,即操作代码本身的能力,已成为开发者不可或缺的技能。要从这种非结构化的文本中还原出完整的路径体系,必须设计一种能够识别缩进层级、维护当前路径栈、并正确判断节点类型的解析机制。这段看似简单的文本,实则蕴含了整个项目的拓扑结构。

2025-08-24 21:48:41 702

原创 三角函数反函数在 SymPy 中的正确使用

asinxasin(x)asinx的值域为−π2π2−2π​2π​,适合处理已知正弦值求角度的情况atanxatan(x)atanx的值域为−π2π2−2π​2π​,适合处理斜率或比值相关的角度计算atan2yxatan2yx的值域为−ππ−ππ,能够正确处理所有象限的角度计算使用Piecewise函数时,必须确保条件覆盖所有可能情况,通常以True作为默认条件。

2025-08-24 20:10:42 797

原创 C++矩阵类设计与实现:高效、健壮的线性代数工具

在科学计算和工程应用中,矩阵运算是基础且关键的操作。本文将介绍一个完整的C++矩阵类实现,它支持常见的矩阵运算,包括加法、乘法、转置、行列式计算和逆矩阵求解。我们将深入探讨设计细节、实现技巧和性能优化。

2025-08-23 21:26:39 739

原创 在 SymPy 中代入抽象函数的数值和导数值

定义符号变量# 定义抽象函数在 SymPy 中处理抽象函数及其导数的数值代入是一个常见且重要的任务。通过使用subs()方法,我们可以分别替换函数值和导数值,从而简化表达式而不保留复杂的分段函数形式。定义符号和抽象函数构建包含函数及其导数的表达式代入特定的点(如u5u=5u5分别替换函数值和导数值这种方法不仅适用于一阶导数,也可以扩展到高阶导数的情况。通过掌握这些技巧,我们可以更有效地处理符号计算中的数值代入问题。

2025-08-23 21:21:04 640

原创 曲面方程的三维可视化:从数学解析到Python实现

在三维几何建模中,我们经常遇到需要将隐式方程可视化的需求。本文将深入探讨一个特定的曲面方程:XH−YH2+ZH2tan⁡(θ)−H2πarcsin⁡(YHYH2+ZH2)=0 X_H - \frac{\sqrt{Y_H^2 + Z_H^2}}{\tan(\theta)} - \frac{H}{2\pi} \arcsin\left( \frac{Y_H}{\sqrt{Y_H^2 + Z_H^2}} \right) = 0 XH​−tan(θ)YH2​+ZH2​​​−2πH​arcsin(YH2​+ZH2​​Y

2025-08-23 21:18:25 1148

原创 SymPy 中抽象函数的推导与具体函数代入

SymPy 的抽象函数功能为符号计算提供了强大的灵活性。建立通用的数学框架和理论模型验证数学定理和公式的正确性求解微分方程并验证解的合理性进行符号化的物理系统建模开发可重用的数学计算模块这种方法不仅提高了代码的可读性和可维护性,还使得数学推导过程更加清晰和严谨。无论是学术研究还是工程应用,掌握抽象函数的使用都是进行高级符号计算的重要技能。# 最终综合示例"""分析函数表达式并进行替换验证"""print("原始表达式:", expr)

2025-08-22 22:03:34 950

原创 解决 SymPy Lambdify 中的符号覆盖与语法错误问题

在科学计算和符号数学中,SymPy 是一个强大的 Python 库,它允许我们进行符号计算并最终将符号表达式转换为数值函数。然而,在使用lambdify函数时,经常会遇到语法错误,特别是当符号变量被意外覆盖时。本文将深入探讨这一问题,并提供完整的解决方案。

2025-08-22 21:52:42 640

原创 齐次变换矩阵的逆变换:原理与SymPy实现

齐次变换矩阵的逆变换是三维空间变换中的基础操作,理解其数学原理对于从事机器人、计算机视觉和图形学等领域的工作至关重要。通过SymPy库,我们能够以符号方式推导和验证逆变换公式,确保数学正确性。在实际应用中,直接使用矩阵求逆功能通常是最简洁高效的方法,而符号计算则为我们提供了深入理解变换原理的工具。无论选择哪种实现方式,理解齐次变换矩阵的结构和性质都是关键。旋转矩阵的正交性保证了逆变换可以通过简单的转置和向量乘法实现,而不需要复杂的数值求逆算法。这种数学特性不仅提高了计算效率,也增强了数值稳定性。

2025-08-22 21:49:25 751

原创 在 SymPy 中代入抽象函数的数值和导数值

定义符号变量# 定义抽象函数在 SymPy 中处理抽象函数及其导数的数值代入是一个常见且重要的任务。通过使用subs()方法,我们可以分别替换函数值和导数值,从而简化表达式而不保留复杂的分段函数形式。定义符号和抽象函数构建包含函数及其导数的表达式代入特定的点(如u5u=5u5分别替换函数值和导数值这种方法不仅适用于一阶导数,也可以扩展到高阶导数的情况。通过掌握这些技巧,我们可以更有效地处理符号计算中的数值代入问题。

2025-08-22 21:37:57 1007

原创 螺旋槽曲面方程的数学建模与偏导数求解

在钻头设计和机械加工领域,螺旋槽的几何建模至关重要。螺旋槽通常由径向截形绕轴做螺旋运动形成,其数学模型可通过参数方程和隐函数方程两种方式描述。该实现可用于钻头设计和加工过程中的几何分析,为优化螺旋槽形状提供数学工具。应用隐函数定理,计算雅可比矩阵及其行列式。,可以模拟不同形状的螺旋槽,并分析其几何特性。为分析螺旋槽的几何特性,需要求解。是曲线参数(对应原始截形中的。

2025-08-22 21:31:46 933

原创 C++中纯虚函数与普通虚函数的深度解析

纯虚函数和普通虚函数在C++面向对象设计中各司其职。纯虚函数强制接口实现,建立严格的类型契约;普通虚函数提供灵活扩展点,支持代码复用。理解它们的区别和适用场景,是设计可维护、可扩展的C++类层次结构的基础。在实际工程中,通常会将两者结合使用,既保证必要的接口约束,又提供合理的默认行为。

2025-08-21 22:14:51 581

原创 基于隐函数定理的偏导数计算及其C++实现

来直接微分,必须借助数学分析中的隐函数定理(Implicit Function Theorem)进行处理。本文将深入探讨这一理论,并通过C++语言实现其数值计算过程,同时验证结果的正确性。接下来,我们使用C++语言实现上述计算过程。结果表明,数值计算值与理论值完全一致,验证了算法的正确性。本实现完全基于标准C++,无需外部依赖,具备良好的可移植性和实用性。在科学计算与工程应用中,我们常常会遇到由方程组隐式定义的函数关系。为了验证该理论的正确性,我们选取一个具体的例子:设。的隐函数,我们的目标是求出。

2025-08-20 23:20:17 1394

原创 使用 SymPy 构建离散平面曲线的分段线性插值表达式

在科学计算和工程应用中,我们经常需要为离散数据点集建立数学表达式,以便进行进一步的分析和计算。本文将详细介绍如何使用 SymPy 库为包含约 1000 个点的离散平面曲线构建分段线性插值表达式,并提供完整的实现代码和验证方法。

2025-08-20 22:48:10 840

原创 基于离散点集的三次样条插值与符号表达式构建:从 Scipy 到 Sympy 的完整实现

尽管完整的符号导数表达式过于庞大,但此框架允许我们对任意单个区间进行精确的符号操作,兼具了数值方法的效率与符号计算的精确性。个,目标是构造一条光滑曲线来逼近这些点,并进一步获得其数学表达式。理想情况下,该表达式不仅能用于数值计算,还应支持符号运算,如求导、积分、极限等。以下为完整的 Python 实现代码,包含数据生成、样条插值、符号表达式构建、高效数值评估和可视化验证。管理的符号表达式,并解决大规模分段函数在数值计算中的效率瓶颈,最终通过可视化验证其正确性。对象,使其成为一个可符号操作的整体。

2025-08-20 22:33:46 922

原创 C++ std::optional 深度解析与实践指南

是 C++17 标准中引入的一个模板类,它封装了一个可能包含值,也可能不包含值(即为空)的情况。你可以把它想象成一个类型安全的包装盒这个盒子可能装着你想要的某个类型的对象。或者它可能是一个空盒子。在引入特殊值:例如,用-1表示不存在的索引,用nullptr表示空指针,用表示未找到的位置。这种方式不通用,且容易出错。指针:返回一个指针,如果为nullptr则表示不存在。但这引入了动态内存分配的所有权问题,调用者无法明确是否需要释放内存。:返回一个值和布尔值的组合,布尔值表示值是否有效。

2025-08-20 22:03:16 749

原创 曲面的交线的切向量计算及其在坐标平面投影的几何分析

在微分几何中,研究两个曲面相交形成的空间曲线性质具有重要理论和应用价值。本文将深入探讨两曲面 $ F_1(x,y,z) = 0 $ 与 $ F_5(x,y,z) = 0 $ 相交曲线的切向量计算及其在坐标平面投影的几何分析,并提供完整的 Python 实现。

2025-08-20 21:52:46 729

原创 深入理解C++ std::shared_ptr:现代C++内存管理的艺术与实践

是现代C++编程中不可或缺的工具,它通过引用计数机制实现了安全的共享所有权模型。掌握不仅仅是学习一个类的API,更是理解一种资源管理的哲学。从手动内存管理到基于RAII的自动管理,这一转变深刻影响了我们构建软件的方式。通过本文的详细讲解和完整示例,我们希望读者能够深入理解的工作原理、正确使用方法以及常见陷阱的规避方法。在实际开发中,合理运用及其配套的,可以显著提高代码的可靠性和可维护性,让我们能够更加专注于解决真正的业务问题,而不是被内存管理的细节所困扰。

2025-08-20 21:49:54 514

原创 SymPy 矩阵到 NumPy 数组的全面转换指南

纯数值矩阵:优先使用np.array()直接转换符号矩阵单次计算:使用subs()后转换np_array = np.array(M_sym.subs({x: 1, y: 2}))多次计算:使用lambdify创建函数f = sp.lambdify((x, y), M_sym, 'numpy')大型矩阵:使用lambdify避免中间符号操作高精度需求:使用evalf()并指定错误处理:始终检查矩阵是否包含未替换符号。

2025-08-16 09:41:36 734

原创 Matplotlib直线绘制:从基础到三维空间的高级可视化

在数据科学和工程领域,可视化是将抽象数据转化为直观洞察的关键桥梁。作为Python生态系统中最强大的绘图库之一,Matplotlib提供了从基础二维图形到复杂三维可视化的全面工具集。直线作为最基本的几何元素,其绘制方法贯穿于数据可视化的各个领域。本文将深入探讨Matplotlib中直线绘制的核心技术与应用实践,帮助读者掌握从基础到高级的直线可视化方法。

2025-08-16 09:39:59 260

原创 Matplotlib中圆柱绘制的深度探索:从数学原理到视觉艺术

在数据可视化的领域中,三维几何体绘制既是基础技能,也是艺术呈现的重要环节。圆柱作为最基本的几何形体之一,在工程建模、科学计算和艺术创作中有着广泛应用。Matplotlib作为Python生态中最强大的可视化库,提供了多种实现3D圆柱的方法。然而,这些方法背后蕴含着不同的数学原理和可视化哲学,值得我们深入探讨。

2025-08-16 09:38:36 370

原创 NumPy 创建空数组并逐个添加元素的深度解析

NumPy 数组的设计初衷是固定大小的数值计算,其性能优势在于连续内存布局和向量化操作。列表转换法是通用且高效的选择预分配方法在已知大小时最优避免频繁使用连接操作(append/stack等)理解这些方法背后的时间复杂度OOO和内存管理机制,可以帮助我们在实际应用中做出更好的选择。记住,在科学计算中,预先分配往往比动态增长更符合 NumPy 的设计哲学。

2025-08-12 21:09:49 579

原创 SymPy中的atan与atan2函数:原理、区别与应用

atan优先使用atan2的场景任何涉及实际坐标系统、需要完整象限信息或可能遇到x0x=0x0的情况,如物理模拟、图形学、控制系统等。使用atan的场景纯数学推导且明确知道输入比例的范围,或需要利用其简化特性时。理解两者的数学本质差异,能够帮助开发者在符号计算和数值计算中做出更合适的选择,避免常见的角度计算错误。SymPy的实现严格遵循数学定义,为符号和数值运算提供了可靠的基础。

2025-08-10 21:45:53 318

原创 利用SymPy与SciPy高效求解参数化方程组的数值解

给定一个包含两个变量aaa和bbb的方程fab0f(a,b) = 0fab0,我们需要求解:当aaa取一系列数值时,对应的bbb值是多少?当符号求解不可行时,我们可以采用数值方法结合向量化计算来高效求解。这里我们创建了一个符号方程aebb24aebb24。在实际应用中,可以替换为任何包含aaa和bbb的复杂表达式。本文介绍了一种结合 SymPy 符号计算和 SciPy 数值优化的向量化求解方法,能够高效处理形如fab0f(a,b)=0。

2025-08-09 10:28:52 429

原创 SymPy 表达式的变量获取:深入理解与正确实践

在 SymPy 中精确提取表达式变量需要深入理解符号语义与计算上下文。方法作为内置功能,平衡了理论严谨性与实践效率。无论是微分、积分、方程求解还是符号优化,掌握变量提取的正确方法都是构建可靠符号计算系统的基石。自由符号是真正驱动表达式变化的独立变量,而非形式记号。这一认知将直接提升你在符号计算领域的工程实现能力。

2025-08-09 10:28:07 619

原创 使用SymPy lambdify处理齐次矩阵的高效向量化计算

形状一致性:确保矩阵所有元素返回相同形状广播处理:常数项需显式处理为数组分量计算:复杂表达式推荐分量计算再组合输入验证:检查输入数组长度是否相等性能考量:大规模数据时优先向量化方法通过正确应用这些技术,可高效实现符号齐次矩阵到数值计算的转换,为计算机图形学、机器人学和科学计算提供强大支持。

2025-08-09 10:27:04 1067

原创 SymPy 中 atan2(y, x)函数的深度解析

等问题的理想工具,确保了计算的数学精确性。通过完整的代码实现和符号计算能力,SymPy 为科学计算提供了坚实的数学基础。在数学和工程计算中,正确计算坐标点的角度是许多应用的核心需求。SymPy 作为 Python 的符号计算库,提供了。该函数不仅正确处理笛卡尔坐标系中所有象限的角度计算,还能精确处理坐标轴上的特殊点。在实际使用中需特别注意 SymPy 中。这种分段定义确保正确识别点的象限位置,避免传统。遵循数学严谨性,返回。

2025-08-07 21:53:42 413

原创 NumPy 实现三维旋转变换

"""构造绕 x 轴旋转的矩阵"""[1, 0, 0],])"""构造绕 y 轴旋转的矩阵"""[0, 1, 0],])"""构造绕 z 轴旋转的矩阵"""[0, 0, 1]])这些函数以角度(以弧度为单位)作为输入参数,利用 NumPy 的三角函数计算能力,生成相应的旋转矩阵。通过 NumPy 实现三维旋转变换,我们不仅能够高效地构造和操作旋转矩阵,还能深入理解三维空间中旋转的数学本质和物理意义。

2025-07-23 22:47:06 683

原创 NumPy 数组拼接的高级技巧与实践

NumPy 提供了强大的数组操作功能,使得数组的拼接变得简单而高效。通过合理使用和np.vstack,我们可以轻松地将不同形状的数组组合成所需的结构。在实际应用中,关注数据一致性、性能优化以及灵活的代码设计,将使我们能够更高效地处理复杂的数组操作任务。掌握这些技巧不仅能够提升数据处理的效率,还能为更高级的数据分析和机器学习任务奠定坚实的基础。通过不断的实践和探索,我们能够更加熟练地运用 NumPy 的强大功能,解决实际问题中的各种挑战。

2025-07-23 22:46:22 1079

原创 深入解析 SymPy 中的符号计算:导数与变量替换的实践指南

SymPy 作为强大的符号计算工具,其核心价值在于严格遵循数学逻辑。函数关系的显式声明是导数计算正确的基石符号一致性是变量替换成功的核心要求物理系统的自动方程推导数学定理的机械证明工程模型的符号化预处理教学材料的自动生成符号计算不仅是工具使用,更是数学思维的编程实现。深入理解其原理,将使您在科学计算领域获得质的飞跃。

2025-07-21 21:53:06 1244

原创 空间螺旋轨迹投影最短距离计算:从几何推导到离散实现

在三维空间中,给定两点p1​x1​y1​z1​与p2​x2​y2​z2​,其中p1​沿一条螺旋轨迹运动,其参数方程写为xθx1​cosθ−y1​sinθyθx1​sinθy1​cosθzθtanβrθ​z1​r为圆柱半径,β为螺旋角,θ为运动参数。我们的最终目标是求:将整条轨迹L与点p2​同时绕z轴旋转,使p2​的y坐标归零;随后沿方向−100(即负。

2025-07-21 21:31:11 594

gmsh帮助【有限元分析】Gmsh 4.13.1有限元网格生成器及其前后处理功能详细介绍

内容概要:Gmsh是一款开源的有限元网格生成器,带有内置的前处理和后处理功能。它支持多种几何模型输入格式,并提供图形用户界面、命令行接口、脚本语言以及应用程序编程接口。Gmsh的核心功能包括生成高质量的二维和三维网格,支持各种单元类型如点、线、三角形、四边形、四面体等,并能处理复杂的几何结构。此外,Gmsh还提供了丰富的插件系统,用于扩展其功能,例如计算同调群、共轭梯度法求解等。最新版本增加了对Fortran API的支持,改进了OCC形状复制,减少了默认阶次,允许在模型和MSH文件中存储任意字符串属性,新增Radioss导出等功能。; 适合人群:从事科学计算、工程仿真领域的研究人员和技术人员,特别是那些需要进行有限元分析、网格生成及优化工作的专业人士。; 使用场景及目标:① 使用Gmsh创建复杂几何模型的高质量网格;② 利用Gmsh提供的前处理工具准备模拟数据;③ 通过后处理模块可视化和分析计算结果;④ 结合插件实现特定领域的高级功能,如拓扑优化、物理场仿真等。; 其他说明:Gmsh自1997年起由Christophe Geuzaine和Jean-François Remacle开发维护,至今已发布多个版本,不断引入新特性并修复已知问题。用户可以根据官方文档获取详细的安装指南、使用教程及API参考。此外,社区活跃,开发者可以通过贡献代码或提出改进建议参与项目发展。

2025-05-13

fltk-1.4.3-source.tar.gz

fltk源码,fltk-1.4.3-source.tar.gz

2025-05-13

gmsh-4.13.1-Windows64.zip

gmshWindows程序,免安装使用,gmsh-4.13.1-Windows64.zip

2025-05-13

gmsh-4.13.1-source.tgz

gmsh源码,gmsh-4.13.1-source.tgz

2025-05-13

gmsh-4.13.1-Windows64-sdk.zip

gmsh官方SDK包,gmsh-4.13.1-Windows64-sdk.zip,亲测可用

2025-05-13

gmsh-4.13.2-source.tgz

gmsh-4.13.2-source.tgz

2025-05-02

boost-1-70-0-msvc-14.1-64.exe

boost_1_70_0-msvc-14.1-64.exe

2025-05-02

平面钻尖三段式变螺旋双槽钻头STEP模型

平面钻尖三段式变螺旋双槽钻头STEP模型

2024-02-28

Visual Studio2022与QT5.12.10实现OCC可视化.docx

亲测可用!Visual Studio2022与QT5.12.10实现OCC可视化.docx

2024-01-16

6s管理表格.xlsx

6s管理表格.xlsx

2023-12-23

CPK计算表格EXCEL.xls

CPK计算表格EXCEL

2023-11-01

微钻头模型.SLDPRT

钻头参数为钻径100mm,平面钻尖,顶角130°,第一后角10°,第二后角30°,螺旋槽绕1周 用Solidworks画个钻头,理解磨尖原理

2023-10-12

直线模组选型计算.docx

直线模组选型计算.docx

2023-10-02

真空发生器选型.docx

真空发生器选型.docx

2023-10-02

油压缓冲器选型.docx

油压缓冲器选型.docx

2023-10-02

无杆气缸选型.docx

无杆气缸选型.docx

2023-10-02

凸轮分割器选型计算.docx

凸轮分割器选型计算.docx

2023-10-02

同步带圆弧齿选型计算.docx

同步带圆弧齿选型计算.docx

2023-10-02

同步带梯形齿同步带设计计算.docx

同步带梯形齿同步带设计计算.docx

2023-10-02

同步带设计计算.docx

同步带设计计算.docx

2023-10-02

三杆气缸选型计算.docx

三杆气缸选型计算.docx

2023-10-02

双杆气缸选型计算.docx

双杆气缸选型计算.docx

2023-10-02

气动手指选型.docx

气动手指选型.docx

2023-10-02

普通V带设计选型.docx

普通V带设计选型.docx

2023-10-02

回转气缸选型.docx

回转气缸选型.docx

2023-10-02

滑台气缸选型.docx

滑台气缸选型.docx

2023-10-02

滚子链传动设计选型步骤

滚子链传动设计选型步骤

2023-10-02

滚珠丝杆选型计算详细步骤

滚珠丝杆选型计算详细步骤

2023-10-02

滚珠丝杆选型步骤(竖直)

滚珠丝杆选型步骤(竖直)

2023-10-02

电磁阀选型计算参考案例

电磁阀选型计算

2023-10-02

单杆气缸选型计算,理论+案例

单杆气缸选型计算

2023-10-02

PyTorch安装教程

PyTorch安装教程,pycharm+python3.9+win10系统,cuda版本

2023-09-18

nanoGrind 4000XD drawing book

工具磨床nanoGrind 4000XD drawing book

2023-09-11

nanoGrind 4000XD intruduction book

数控工具磨床nanoGrind 4000XD intruduction book

2023-09-11

砂轮磨损廓形求解的数学模型

砂轮磨损廓形求解的数学模型(哈理工徐梦迪硕士论文,导师刘献礼)

2023-08-12

基于SAM模型的交互式图像分割程序

基于meta开源的SAM模型,实现读取一张图片,弹出窗口,通过鼠标点选提示点,进行目标区域分割,计算目标的像素面积,并显示在图像上。

2023-08-10

图像法测量砂轮轮廓程序

图像法测量砂轮轮廓程序

2023-08-08

平面钻尖刃面数据反推螺旋槽截面轮廓代码

针对平面钻尖,已知刃面数据点,由此计算磨尖前的螺旋槽截面数据

2023-08-07

求螺旋面与平面的交线的代码

求螺旋面与平面的交线 离散点曲线做螺旋运动后,求其与已知平面的交线 可用于螺旋槽加工

2023-08-07

单杠内燃机设计程序

这是一个单杠内燃机设计程序,采用参数化输入,过程详细,直接输出设计结果。

2019-02-23

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除