Ubuntu20.04服务器深度学习环境配置教程以及基于Win10的VScode远程连接开发

本文提供了一步一步的教程,详细讲解如何在Ubuntu20.04服务器上配置深度学习环境,包括安装Ubuntu、显卡驱动、CUDA、Anaconda3以及PyTorch-GPU。同时,还指导如何设置VScode进行远程连接开发,确保开发者能在本地高效地使用服务器资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ubuntu20.04服务器深度学习环境配置教程以及基于Win10的VScode远程连接开发

一. 介绍

本文主要介绍服务器上的深度学习环境配置,以及如何利用本地机器来远程连接使用服务器。

深度学习环境配置总体思路

1)先安装显卡驱动和该驱动最高支持的cuda版本(用nvidia-smi,以及nvcc -V查看)
2)安装Anaconda,创建自己的虚拟环境在虚拟环境中安装pytorch与对应的cuda版本。
查看安装版本方法:
import torch/print(torch.version)/print(torch.version.cuda)
在安装pytorch时需注意,官方安装比较满,一般需要换源,命令如下:
pip install torch torchvision -i https://pypi.mirrors.ustc.edu.cn/simple/
3)在自己的虚拟环境中配置各种包

二. 安装教程

1)Ubuntu20.04系统安装

一般服务器自带启动盘,一直yes就行了。
安装成功后,打开终端,把相应的配置更新一下:

sudo apt update
sudo apt upgrade

2)显卡驱动安装

这里有很多安装教程,介绍一种常用的一种最简单的。
1)常用的方法
以下命令在终端依次执行

# 卸载已有驱动
sudo apt-get --purge remove nvidia*
sudo apt autoremove
sudo apt-get --purge remove "*cublas*" "cuda*"
sudo apt-get --purge remove "*nvidia*"
# 安装推荐驱动
sudo ubuntu-drivers autoinstall
# 重启
sudo reboot

2)最简单的方法
选择设置中的【软件和更新】-【附加驱动】,选择如下图所示。
在这里插入图片描述
然后在终端测试一下,是否安装成功

nvidia-smi

在这里插入图片描述
显卡驱动安装成功,同时要注意我们显卡驱动的版本为515.65.01,
它能够支持安装cuda的最高版本为11.7,后续安装的cuda版本要小于11.7。

3)cuda安装

本文安装的是cuda 11.3,其他版本类似。
进入官网 https://developer.nvidia.com/cuda-toolkit-archive

cuda 11.3.0/11.3.1 随便选一个就行,这里我选择11.3.1,选择之后进入了下面这个页面,按照我这个选:
在这里插入图片描述
随后就会生成下载链接:
在这里插入图片描述
在Ubuntu终端执行:

wget https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.19.01_linux.run

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值