- 博客(157)
- 资源 (6)
- 收藏
- 关注

原创 搭建个人深度学习工作站
搭建个人深度学习工作站文章目录搭建个人深度学习工作站1.购买之前- 具体配置- 其他升级了的内容:- GPU安装视频2. 搭建系统2.1 系统选择- `搭建系统`:ubuntu20.04- 如何安装ubuntu系统2.2 系统环境配置过程2.2.1 ubuntu常用工具安装(1) 服务器安装 ssh(2) 远程桌面工具(3) 内网穿透(4) 远程操作 & 服务器监控(5) ubuntu便捷使用2.2.1 DL前置环境配置(1) driver-510.60 & cuda 11.2 &
2022-04-19 12:10:30
5799

原创 RKNN3399 快速入门开发目录
目录基础入门知识常见设置和问题解决Reference基础入门知识rknn3399pro 2小时入门指南(一)基础概念和基本开发流程rknn3399pro 2小时入门指南(二)RKNN刷机攻略详解rknn3399pro 2小时入门指南(三)在PC上搭建RKNN模拟环境、 模型转换代码、RK3399 pro使用rknn3399pro 2小时入门指南(四)h5模型训练、tflite模型生成rknn3399pro 2小时入门指南(五)tflite转化成rknnrknn3399pro 2小时入门指南(六
2021-04-29 19:03:34
1048

原创 目标检测论文精读汇总
目录 1 R-CNN系列(1) R-CNN灵感来源:Selective search for object recognition(2) R-CNN开山之篇:R-CNN(3) R-CNN起承转合之笔:Fast R-CNN(4) R-CNN完全深度学习大成篇:Faster R-CNN 2 YOLO系列(5)YOLO系列最快的仔:YOLO V1(6)YOLO系列重要续作:YOLO V2(5)YOLO系列原创性idea里程碑:YOLO V3(6)YOLO官方交接之棒:YOLO V4:(7)YOLO非官方异军突起、
2021-04-29 18:22:15
1234

原创 目标检测速成计划总纲 : 基础知识、模型架构、数据处理、模型优化、应用部署、AIOT、竞赛成长
【R-CNN系列】R-CNN灵感来源:[论文解读] 图像分割 & 目标识别 | Selective Search和python实现| <Selective Search for Object Recognition>R-CNN开山之篇:【论文解读】深度学习目标检测的开山鼻祖 |R-CNN详解 | 两阶段目标检测代表R-CNN起承转合之笔:【论文解读】目标检测的发展之作|Ross大神续作 | Fast R-CNNR-CNN完全深度学习大成篇:【论文解读】深度学习目标检测 | R-CNN
2020-12-31 18:07:21
2196
1

原创 【OpenCV-Python-Tutorial 数字图像处理】opencv3.4 官方API及其实例总结
目录大纲官方链接整理OPENCV API教程和实例整理1. 图像操作基础1.1 图像操作基础(1) import cv2功能: 导入函数库(2) rtval = cv2.imread(file_path, flags)> 功能:读取图片> 参数:> 返回值rtval:> 示例:(3) cv2.imshow(wname, img)> 功能:显示图片> ...
2020-02-25 00:44:24
4510
1

原创 机器学习环境的搭建和使用----anaconda/jupyter/tensorflow-gpu /opencv等 win10安装和常用使用方法总结
目录大纲1. 环境说明2. Anaconda安装和常用使用技巧总结2.1 pip、conda更换国内源和常用方法2.2 anaconda虚拟环境使用2.3 anaconda常见问题解决方法2.4 anaconda常见命令总结2.5 anaconda如何干净地卸载重装3. jupyter使用和常用技巧总结3.1 jupyter notebook如何运行在不同虚拟环境下?3.2 jupyter no...
2020-02-19 17:10:11
2257
1
原创 【第3节】“茴香豆“:搭建你的 RAG 智能助理
RAG(Retrieval Augmented Generation)技术,通过检索与用户输入相关的信息片段,并结合外部知识库来生成更准确、更丰富的回答。解决 LLMs 在处理知识密集型任务时可能遇到的挑战, 如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆。LLM会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。
2024-04-24 23:44:13
1372
原创 【第7节】OpenCompass 大模型评测实战
上海人工智能实验室科学家团队正式发布了大模型开源开放评测体系 “司南” (OpenCompass2.0),用于为大语言模型、多模态模型等提供一站式评测服务。开源可复现:提供公平、公开、可复现的大模型评测方案全面的能力维度:五大维度设计,提供 70+ 个数据集约 40 万题的的模型评测方案,全面评估模型能力丰富的模型支持:已支持 20+ HuggingFace 及 API 模型分布式高效评测:一行命令实现任务分割和分布式评测,数小时即可完成千亿模型全量评测。
2024-04-24 23:08:38
1139
原创 【第6节】Lagent & AgentLego 智能体应用搭建
在这一部分中,我们将带大家直接使用 AgentLego 工具,体验 AgentLego 的 WebUI,以及基于 AgentLego 自定义工具并体验自定义工具的效果。在上面介绍中可知,AgentLego 算法库既可以直接使用,也可以作为智能体工具使用。下面将分别介绍这两种使用方式。我们将以目标检测工具为例。
2024-04-24 22:27:13
1300
1
原创 【第5节】LMDeploy 大模型量化部署实践
视频文档作业lmdeploy官方文档OpenXLab个人感觉camp2讲解的没有第一次的内容好,都是照着文档跑一遍,基础内容也没有啥深度(也可能是我水平太低哈,哈哈)。补充观看之前1.0版本的讲解吧文档视频基础作业(结营必做)配置 LMDeploy 运行环境以命令行方式与 InternLM2-Chat-1.8B 模型对话进阶作业设置KV Cache最大占用比例为0.4,开启W4A16量化,以命令行方式与模型对话。(优秀学员必做)
2024-04-24 01:42:10
1654
原创 【第4讲】XTuner 微调 LLM:1.8B、多模态、Agent
视频教程文档连接作业xtuner官网基础作业(结营必做)训练自己的小助手认知(记录复现过程并截图)进阶作业将自我认知的模型上传到 OpenXLab,并将应用部署到 OpenXLab(优秀学员必做)复现多模态微调(优秀学员必做)- 2 种不同训练范式- 数据处理的一般过程原始数据 -> 标注格式数据 -> 添加对话模板 -> tokenized数据 ->添加label -> 开始训练(1) 标准格式数据(2)添加对话模板对话模板有3种角色:(3)微调方案XTuner 的运行原理。
2024-04-22 20:00:01
805
原创 【第 2 节】轻松玩转书生·浦语大模型趣味 Demo
1.2.1 什么是大模型?大模型通常指的是机器学习或人工智能领域中参数数量巨大、拥有庞大计算能力和参数规模的模型。这些模型利用大量数据进行训练,并且拥有数十亿甚至数千亿个参数。大模型的出现和发展得益于增长的数据量、计算能力的提升以及算法优化等因素。这些模型在各种任务中展现出惊人的性能,比如自然语言处理、计算机视觉、语音识别等。这种模型通常采用深度神经网络结构,如 Transformer、BERT、GPT( Generative Pre-trained Transformer )等。
2024-04-17 19:34:26
1328
原创 【第1节】书生·浦语大模型全链路开源开放体系
书生·浦语 InternLM介绍InternLM 是在过万亿 token 数据上训练的多语千亿参数基座模型。通过多阶段的渐进式训练,InternLM 基座模型具有较高的知识水平,在中英文阅读理解、推理任务等需要较强思维能力的场景下性能优秀,在多种面向人类设计的综合性考试中表现突出。在此基础上,通过高质量的人类标注对话数据结合 RLHF 等技术,使得 InternLM 可以在与人类对话时响应复杂指令,并且表现出符合人类道德与价值观的回复。
2024-04-17 11:22:40
1639
原创 推荐几个AI顶会deadline总结网站
不止含AI顶会的近期截稿时间,还包括计算机其他方向的顶会 | (链接)[https://link.zhihu.com/?target=https%3A//ccfddl.github.io/]很多人在准备投稿论文,那么如何知道有哪些可投的顶会以及对应的截稿时间呢?下面列举不错的ddl总结。计算机视觉相关AI会议的近期截稿时间,非常全面,包括二区三区等各种会议,但是界面相对凌乱。含ML/CV/NLP/DM等AI各领域顶会的近期截稿时间 |自动驾驶相关AI顶会的近期截稿时间 |
2024-01-02 16:56:37
1818
原创 前端入门链接汇总
vue官方入门地址 : 菜鸟教程 : ------------------------------- --------------------------菜鸟教程 :
2023-10-13 11:16:02
240
原创 zotero在不同系统的安装(win/linux)
zotero 官网:(官方)推荐常用的插件:入门视频推荐:点击 exe文件自动安装就好。
2023-08-18 00:40:05
2040
3
原创 最强AI标注工具CVAT(检测、旋转目标检测、分割、3d目标检测、关键点识别、姿势识别、车道线等)从搭建到使用的最详细攻略
1最强AI标注工具CVAT2支持检测、旋转目标检测、分割、3d目标检测、关键点识别、姿势识别、车道线等3从搭建到标注使用的最详细攻略
2023-06-14 11:40:17
3003
原创 2023.05.30-ubuntu22.04多卡服务器卸载cuda重新安装(踩坑不断版本)
NVIDIA 官方文档了解 CUDA、CUDNN 和 TensorRT 的安装流程和配置方法,请见。
2023-06-01 13:33:04
1972
原创 json.loads问题终极解决方法
一般都是str -> json的时候(必须要保证str是完整的json的str的情况下哈,如果格式本身有问题的话,例如只有一半,肯定报错:),会使用json.loads(xxx),但是json.loads要求极其严苛,经常会出现七七八八的错误。-> 适用-> 适用-> 适用。
2023-05-24 01:00:18
2055
原创 基于segment anything model(SAM)相关性研究的各个方向论文/项目汇总
有关anything相关的主流任务: 2d检测相关(AnyObject), 3d检测相关(Any3D),AI生成相关(AnyGeneration), AI模型优化相关(), AI任务相关, etc.AnyObject - 分割、检测、分类、医学图像、OCR、姿态等。AnyGeneration - 文本到图像的生成、编辑、修复、样式转换等。Any3D - 3D 生成、分割等。AnyModel - 任何修剪、任何量化、模型重使用。
2023-05-19 21:32:21
1169
原创 常见深度学习库mmlab系列安装(mmdetection/mmdetection3d/mmyolo/mmsegmentation/mmocr/mmselfup/mmdeploy/mmrazor)
open-mmlab系列已经更新之3.x系列,底层也从mmcv-> mmengine,发生了较大的变化。类似python2->python3。所以很多环境需要重新安装和更新。方法也不一样了,特此安装和整理一下。
2023-05-19 20:01:57
1226
2
原创 更换国内anaconda下载源/快速安装深度学习库/高速下载安装包
为了改善这一状况国内涌现出了很多的anaconda的镜像站点,比如清华大学tuna团队维护的清华镜像站点和北外镜像站点大概是目前国内使用人数最多更新也非常及时的站点之一了。比如你添加了清华镜像的bioconda频道之后,北外镜像的bioconda频道就没必要添加了,这俩的内容是一致的,没必要又去让conda搜索一遍。上海交通大学有两个镜像站点,两个里都有 anaconda 的镜像,但是链接似乎跟其他的站点不太一样,因此我这边就不整理啦,需要的同学自己去研究一下吧~后面的地方用具体的频道的链接代替就可以了。
2023-05-19 16:22:51
1722
原创 zotero使用攻略
下载最新的xpi文件进行安装,安装方法:打开 Zotero -> 工具 -> 插件 -> 右上小齿轮图标 -> Install Add-on。例如我觉得foxit pdf 可以添加多种注释(多种下划线,各种不同的框,自由手绘,各种颜色文本框)等,所以推荐使用这个。也有人觉得zotero翻译功能插件更好用,那就不改默认打开方式。编辑->首选项 ->常规-> 打开pdf使用 ->选择自己比较适合的工具。这样每次上传到打开的时候,就会直接调用foxit工具了。From File …-> 选择下载好的xpi文件。
2023-03-27 00:50:39
2424
原创 c++编程入门到精通(四) 编译过程详解(g++ 编译选项 & cmake编译初解 & vscode调试c++)
CMake是一个跨平台的安装编译工具,可以用简单的语句来描述所有平台的安装(编译过程)。CMake可以说已经成为大部分C++开源项目标配。
2023-02-26 00:47:39
2087
原创 3d视觉相关论文阅读目录汇总
3d目标检测数据集介绍(数据格式,保存形式,适配算法库等)3d目标检测 & 自动驾驶 数据集。point-based 3d视觉。voxel-base 3d 视觉。
2023-02-14 19:18:06
673
1
原创 (汇总篇)语义SLAM相关开源方案| 全球优秀作者与实验室 | SLAM学习资料整理
SLAM 与深度学习相结合的工作当前主要体现在两个方面,一方面是将语义信息参与到建图、位姿估计等环节中,另一方面是端到端地完成 SLAM。针对建图的工作一方面是利用几何信息进行稠密重建,另一方面很多工作利用语义信息达到了很好的语义重建效果,三维重建、SFM。动态 SLAM 也是一个很值得研究的话题,这里不太好分类,很多工作用到了语义信息或者用来三维重建,收集的方案相对较少。优化可能是 SLAM 中最难的一部分了吧 +_+ ,一般都是直接用现成的因子图、图优化方案,要创新可不容易。
2023-02-12 22:58:01
6149
4
原创 【论文解读】一文详解cascade rcnn |《Cascade R-CNN: Delving into High Quality Object Detection》| 二阶段目标检测核心源码解读
论文链接:https://arxiv.org/abs/1712.00726代码链接:https://github.com/zhaoweicai/cascade-rcnn目标检测一般是通过 iou (预测proposal与gt bbox交并比)阈值,来进行正负样本的划分,一般会取0.5,这并不算高。iou阈值越高理论上应该和gt bbox越接近,但是这样训练会导致检测效果的(检测指标,例如mAP)大大下降。主要原因有以下2点:(1) iou越高,训练过程中正样本数目越少,容易发生过拟合(2) 推理阶段
2023-01-30 00:00:52
1682
1
原创 【论文解读】一文详解RetinaNet | <Focal Loss for Dense Object Detection>|源码详解 多类别focal loss
目标识别有两大经典结构: 第一类是以Faster RCNN为代表的二阶段识别方法,这种结构的第一阶段专注于proposal的提取,第二阶段则对提取出的proposal进行分类和精确坐标回归。二阶段结构准确度较高,但因为第二阶段需要单独对每个proposal进行分类/回归,速度就打了折扣;目标识别的第二类结构是以YOLO和SSD为代表的单阶段结构,它们摒弃了提取proposal的过程,只用一级就完成了识别/回归,虽然速度较快但准确率远远比不上两级结构。那有没有办法在单阶段结构中也能实现较高的准确度呢?
2023-01-04 18:30:22
3812
原创 mmdetection从入门到精通(一)-汇总目录
MMDetection 是商汤出品的集成了几个方面顶级模型组合的,模块化的,基于 PyTorch 的目标检测开源工具箱。是深度学习工作者的必备工具,非常有必要深入掌握。近期汇总一下从入门到精通的,希望有助于帮助很多需要的朋友。本文主要是基于开展,如果后续2.x系列更新的话,理论上应该是模型或者一些常见bug,大体结构应该大同小异。如果有较大框架的变更的话,请参照官网为准。最新的 2.26.0 版本已经在 2022.11.23 发布:支持在 NPU 上进行训练。
2022-12-28 21:49:37
742
原创 nvidia-1080服务器上离线安装mmdetection2.23步骤
1)安装mmdetection如果不需要编译的话,只需要在anaconda里面安装相关cudatoolkit即可。安装 conda从清华源下载的是cpu版本, 或者conda不能正常调用pip安装的pytorch问题的话。,建议从清华源下载对应cuda版本的pytorch版本离线安装包,手动安装(参照我如下具体内容)不同的pytorch版本也对应着不同的mmcv版本,需要自行对应好。另外,针对不同的cuda版本,需要安装对应好的pytorch版本;mmcv离线包下载参见上图中。中不同版本的具体链接。....
2022-08-05 16:02:06
664
frpc-linux-amd64
2024-05-21
zotero6&7下载安装包和常用插件集成
2024-01-03
rknn-toolkit-x86-cp35.whl
2020-11-02
cifar-10-100.zip
2020-08-09
rknn3399pro刷机合集(debian10镜像、刷机工具、官方代码等)
2020-08-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人