问题解决:原理、影响与应对策略
1. 问题解决概述
问题解决本质上是指通过采取适当的行动,从当前状态达到期望的目标状态。可以将其正式描述为对状态应用操作符以实现目标。研究人们如何解决谜题是研究问题解决的常见方式,因为从一个状态到下一个状态,最终到目标状态的转变可以直接观察到。
以汉诺塔问题为例,其目标是将所有圆盘从左手柱移动到右手柱,同时存在一些约束条件:每次只能移动一个圆盘;圆盘必须放在柱子上,且不能将大圆盘放在小圆盘之上。解决该问题时,首先要决定将最小的圆盘移动到哪里(中间柱或右手柱),接着决定移动哪个圆盘。虽然有多种思考和解决该谜题的方法,但只有一条正确的最短路径。
汉诺塔问题长期以来一直是问题解决的有用示例。它相对简单、清晰但又并非微不足道,具有明确的起始状态和目标状态,操作易于执行,约束条件也相对清晰,人们能够轻松看到圆盘的状态,并判断离目标状态的距离。对于三到四个圆盘的情况,人们通常能够解决该谜题。
2. 问题解决的重要性
当用户不知道下一步该做什么时,就会涉及问题解决。这种情况在学习过程中尤为常见,新手用户会在学习中大量运用问题解决能力,而专家用户在遇到新颖和不寻常的情况时也需要进行问题解决。例如,当专家遇到新类型的故障或故障的新组合时,通常需要采用问题解决策略,如试错法等。
在汉诺塔问题中,用户通常不知道完整的移动序列,因此需要进行问题解决。有些用户会在脑海中思考问题,考虑可能的移动及其结果;而另一些用户则会直接开始移动圆盘,由于其行为更易于观察,因此更便于研究他们的问题解决方式。在开始时,用户的行为通常较慢且费力,但随着学习的进行,他们的表现会变得更快。