1、什么是动态系统?
动态系统
动态系统是变量随时间变化的系统,可利用变量随时间的变化构建导致其变化机制的模型。也指能生成类似于实验测量系统的时间序列的数学模型。
2、我们如何通过实验证明一个动态系统表现为线性?
我们使用叠加原理。
3、挑选三个你有兴趣在实验室研究的主题。对于每个主题,定义系统及其周围环境。周围环境中发生的事件是否会影响你的系统?针对每个选择,设计一个实验来确定系统是否表现为线性。讨论你希望研究的时间尺度,然后通过互联网等方式确定是否有合适的仪器以及这些仪器是否负担得起。与你的同学和老师讨论你的结论。
以下为三个示例主题及相关分析:
-
主题 :植物光合作用
- 系统 :植物及其生长容器内的环境(包括土壤、空气等)
- 周围环境 :实验室的其他区域、室外环境等
- 周围环境影响 :实验室温度、光照强度变化、室外空气污染等可能影响植物光合作用
- 实验设计 :设置不同光照强度梯度,测量植物在不同光照下的氧气释放量,看是否符合线性关系
- 时间尺度 :以小时或天为单位研究
- 仪器 :光照强度计、氧气传感器等,这些仪器在市场上较常见且价格相对合理 -
主题 :细胞增殖
- 系统 :培养皿中的细胞及培养液
- 周围环境 :培养箱外环境、实验室其他实验操作等
- 周围环境影响 :培养箱温度波动、其他实验产生的化学物质挥发等可能影响细胞增殖
- 实验设计 :添加不同浓度的生长因子,观察细胞数量随时间的变化,判断是否线性
- 时间尺度 :以天为单位
- 仪器 :细胞计数器、显微镜等,部分仪器价格较高,但学校实验室可能有配备 -
主题 :酶促反应
- 系统 :反应容器内的酶、底物和反应溶液
- 周围环境 :实验室的温度、湿度等
- 周围环境影响 :温度和湿度变化可能影响酶的活性
- 实验设计 :改变底物浓度,测量产物生成速率,看是否呈线性
- 时间尺度 :以分钟为单位
- 仪器 :分光光度计等,价格有不同档次,可按需选择
最后,将这些结论与同学和老师讨论,可从不同角度完善实验设计和分析结果。
4、什么是微分方程?
微分方程是一个数学方程,它表达了一个或多个变量的函数值与其各阶导数的值之间的关系。
5、微分方程的阶是什么?
微分方程的阶等于其最高阶导数的阶数。
6、什么是常微分方程(ODE)?
常微分方程是只有一个自变量(通常是时间)的微分方程。
7、微分方程的阶和维数是什么?
微分方程的阶等于其最高阶导数的阶数。
微分方程的维数是为了唯一确定一个解必须指定的初始条件的数量。
对于常微分方程,阶和维数相等。
相比之下,延迟微分方程具有无限维数。
8、动态系统的变化时间尺度是什么?
变化时间尺度指变量发生显著变化所需的时间。对于给定时间区间,可按公式
T(x) := x(t)的时间尺度 = (x的最大值 - x的最小值) / |dx/dt|的最大值
来估算。
例如,当x(t)满足特定条件且k < 0时,T(x)约等于k⁻¹,即x减小到其初始值的1/e所需的时间。科学家和工程师常用1/e时间来描述系统对扰动的响应。
9、范德波尔方程 $\frac{d^{2}x}{dt^{2}}+\varepsilon(1 - x^{2})\frac{dx}{dt}-kx = 0$,其中 $\varepsilon$ 是阻尼系数。将此方程重写为两个一阶方程组成的方程组。
设 $ v = \frac{dx}{dt} $,则 $ \frac{dv}{dt} = \frac{d^{2}x}{dt^{2}} $。
原方程可化为
$$
\frac{dv}{dt} = -\varepsilon(1 - x^{2})v + kx
$$
所以,该方程可重写为一阶方程组
$$
\begin{aligned}
\frac{dx}{dt} &= v \
\frac{dv}{dt} &= -\varepsilon(1 - x^{2})v + kx
\end{aligned}
$$
10、什么是质量作用定律,它在什么时候有效?
质量作用定律
质量作用定律是一个经验定律,指出过程的速率与参与反应