2、机器学习中的统计相似性与自适应智能电子学习系统开发

机器学习中的统计相似性与自适应智能电子学习系统开发

1. 机器学习中的统计相似性

1.1 现有方法的局限性

许多现有的方法,如 Bicego(2020)、Florêncio 等人(2020)、Nanni 等人(2020)、Silva 等人(2020)等所使用的方法,均采用欧几里得距离。然而,这些方法无法解决对由独立同分布随机值矩阵表示的对象进行分类的问题。

1.2 目标与方法

我们的目标是将无特征方法扩展到基于相似性的分类中,采用非参数相似性度量和非参数双样本同质性检验。由于这些工具的非参数性质,我们无需对训练样本的假设分布做出任何假设。同时,这些工具具有通用性,能够对所有可能的变体进行同质性假设检验,包括不同位置参数和相同尺度参数、相同位置参数和不同尺度参数,以及位置和尺度参数均不同的情况。所提出的相似性度量也具有通用性,适用于无平局和有平局(重复)的样本。

1.3 双样本同质性度量

考虑来自总体 A 和 B 的训练样本 a = (a1, a2, …, an) ∈ A 和 b = (b1, b2, …, bn) ∈ B,它们分别服从绝对连续分布 F 和 G。对于测试样本 c = (c1, c2, …, cn) 的分类问题,可归结为检验 c 与 a 以及 c 与 b 的同质性。虽然存在各种非参数双样本同质性检验方法(Derrick 等人,2019),但每种方法都有其局限性。例如,Kolmogorov - Smirnov 检验虽能检验一般假设 F = G,但对异常值敏感且需要大样本;Wilcoxon 符号秩检验仅能检验位置偏移假设。我们认为,Klyushin 和 Petunin(2003)开发的方法是最有效和通

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值