4、时间序列分析中的机器学习:原理、方法与应用

时间序列分析中的机器学习:原理、方法与应用

1. 时间序列基础概述

时间序列是按时间顺序排列和索引的数据系列,是过去在固定间隔进行的测量集合,每个测量值都有一个实际值和时间戳。其数学定义可表示为:
[y_t = {y_1, y_2, …, y_n}]

由于时间序列只能进行有限次观察,其底层过程可假设为 n 维随机变量集合,且假设为随机过程有助于进行无限次观察。当通过数学函数 (y_t = f(time)) 观察时间序列数据时,该序列为确定性序列;当通过 (y_t = f(time, \epsilon)) 观察,其中 (\epsilon) 为随机项时,为非确定性或随机序列。此外,平稳性是时间序列的重要特征,平稳时间序列的统计属性(如均值、自相关和方差)随时间保持不变。

时间序列数据主要分为单变量时间序列(UTS)和多变量时间序列(MTS),MTS 可看作多个 UTS 的无限序列。如今,由于众多现实应用和人类活动产生了大量时间序列数据,其来源广泛,涵盖生物信号、天气记录、股票市场数据、医疗信号等,例如每月财务数据、年度出生率数据、每小时互联网数据和年度温度数据等。

时间序列分析的主要目标是从时间序列数据中得出可操作的统计信息和其他特征,常见的数据挖掘活动包括分类、分组、预测、分割、异常检测、表示和索引等。

2. 时间序列表示

直接从时间序列数据学习通常效率低下且费力,因此时间序列挖掘的根本问题是如何表示时间序列数据。由于时间序列的高维度,直接处理原始时间序列的算法计算成本高,会导致非平凡索引和数据挖掘技术性能大幅下降。所以,将时间序列转换为低维形式是常见的表示方法,数学上可定义为操作 (T),将原始时间序列 (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值