5天搞定深度学习框架-Caffe入门系列—8916人已学习
课程介绍
本课程是在windows环境下的caffe课程,主要使用的是python的接口。 首先带着大家完成一个MNIST手写数字识别的项目,让大家了解caffe训练模型的大致流程。然后会讲到caffe中的一些重要文件和配置,使用python绘图。后的部分会使用GoogleNet实现图像识别。
课程收益
了解caffe基本框架,以及文件配置。学会绘制网络结构图,特征平面图,loss曲线图和accuracy曲线图。学会使用caffe训练模型的完整流程,并学会训练自己的模型。
讲师介绍
覃秉丰 更多讲师课程
机器学习,深度学习神经网络领域多年开发研究经验,精通算法原理与编程实践。曾完成过多项图像识别,目标识别,语音识别的实际项目,经验丰富。关注深度学习领域各种开源项目,如TensorFlow,Caffe,Torch等。喜欢理论与实践相结合的教学风格,课程编排由浅入深,体系清晰完整。
课程大纲
1. Caffe介绍 12:18
2. Caffe在windows下的安装编译 8:25
3. Caffe快速上手-mnist数据集分类(一) 20:27
4. Caffe快速上手-mnist数据集分类(二) 20:26
5. Caffe文件详解 44:17
6. 各种优化器的介绍 25:30
7. Caffe的python接口安装,以及模型可视化 28:33
8. Caffe特征图可视化以及学习曲线可视化 45:14
9. GoogleNet结构讲解,准备用GoogleNet实现图像识别 28:59
10. 使用python接口调用GoogleNet实现图像识别 16:38
11. Caffe在windows下GPU版本的安装 14:53
12. 使用自己设计的网络训练自己的图像识别模型(一) 26:08
13. 使用自己设计的网络训练自己的图像识别模型(二) 39:16
14. 迁移学习-Finetune 27:51
15. Snapshot以及课程总结 8:27
大家可以点击【 查看详情】查看我的课程
课程介绍
本课程是在windows环境下的caffe课程,主要使用的是python的接口。 首先带着大家完成一个MNIST手写数字识别的项目,让大家了解caffe训练模型的大致流程。然后会讲到caffe中的一些重要文件和配置,使用python绘图。后的部分会使用GoogleNet实现图像识别。
课程收益
了解caffe基本框架,以及文件配置。学会绘制网络结构图,特征平面图,loss曲线图和accuracy曲线图。学会使用caffe训练模型的完整流程,并学会训练自己的模型。
讲师介绍
覃秉丰 更多讲师课程
机器学习,深度学习神经网络领域多年开发研究经验,精通算法原理与编程实践。曾完成过多项图像识别,目标识别,语音识别的实际项目,经验丰富。关注深度学习领域各种开源项目,如TensorFlow,Caffe,Torch等。喜欢理论与实践相结合的教学风格,课程编排由浅入深,体系清晰完整。
课程大纲
1. Caffe介绍 12:18
2. Caffe在windows下的安装编译 8:25
3. Caffe快速上手-mnist数据集分类(一) 20:27
4. Caffe快速上手-mnist数据集分类(二) 20:26
5. Caffe文件详解 44:17
6. 各种优化器的介绍 25:30
7. Caffe的python接口安装,以及模型可视化 28:33
8. Caffe特征图可视化以及学习曲线可视化 45:14
9. GoogleNet结构讲解,准备用GoogleNet实现图像识别 28:59
10. 使用python接口调用GoogleNet实现图像识别 16:38
11. Caffe在windows下GPU版本的安装 14:53
12. 使用自己设计的网络训练自己的图像识别模型(一) 26:08
13. 使用自己设计的网络训练自己的图像识别模型(二) 39:16
14. 迁移学习-Finetune 27:51
15. Snapshot以及课程总结 8:27
大家可以点击【 查看详情】查看我的课程