6、Kubernetes API Server与调度器深度解析

Kubernetes API Server与调度器深度解析

1. API Server内部机制

1.1 CRD控制循环

自定义资源定义(CRDs)是可以添加到运行中的API服务器的动态API对象。由于创建CRD会创建新的HTTP路径,负责添加这些路径的控制器位于API服务器内部。虽然随着委托API服务器的引入,该控制器大部分已从API服务器中抽象出来,但默认情况下仍在进程内运行,也可在进程外运行。

CRD控制循环的操作如下:

for crd in AllCustomResourceDefinitions:
    if !RegisteredPath(crd):
       registerPath
for path in AllRegisteredPaths:
    if !CustomResourceExists(path):
       markPathInvalid(path)
       delete custom resource data
       delete path

创建自定义资源路径相对简单,但删除自定义资源较为复杂,因为删除自定义资源意味着删除与该类型资源关联的所有数据,以防止旧数据在CRD重新添加时复活。在删除HTTP服务路径之前,先将路径标记为无效,防止创建新资源,然后删除与CRD关联的所有数据,最后删除路径。

1.2 调试API服务器

1.2.1 基本日志

默认情况下,API服务器会记录发送到它的每个请求,包括客户端IP地址、请求路径和服务器返回的代

内容概要:本文详细介绍了一个基于布谷鸟搜索算法(CS)注意力机制长短期记忆网络(ALSTM)融合的风电功率预测项目实例,旨在通过智能优化深度学习相结合的方法提升预测精度。项目涵盖了从数据预处理、特征工程、CS算法优化ALSTM超参数、注意力机制增强模型对关键时序特征的关注能力,到模型训练、预测及结果可视化的完整流程。文中还提供了MATLAB代码示例,包括数据填补、归一化、滑动窗口构建样本、CS算法实现、ALSTM建模训练、预测反归一化、误差评估及注意力权重可视化等关键环节,展示了CS-ALSTM模型在应对风电数据高波动性、非线性、噪声干扰和长序列依赖等问题上的有效性。; 适合人群:具备一定机器学习深度学习基础,熟悉MATLAB编程,从事新能源预测、智能电网、时间序列分析等相关领域的研究人员或工程师,尤其是工作1-3年希望提升模型优化实战能力的技术人员; 使用场景及目标:①应用于风电场功率预测,提升预测精度以优化电网调度能源消纳;②研究智能优化算法(如CS)深度学习模型(如ALSTM)的融合机制;③开展太阳能、负荷等其他时序预测任务的模型开发参数自动优化; 阅读建议:此资源以实际项目为导向,强调算法实现工程应用结合,建议读者在理解模型架构基础上,动手复现代码并调试参数,重点关注CS算法的全局寻优过程注意力机制的可视化分析,深入掌握模型优化逻辑预测性能提升路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值