9、葡萄酒质量预测:处理不平衡数据集与模型构建

葡萄酒质量预测:处理不平衡数据集与模型构建

1. 处理不平衡类别

在处理葡萄酒质量数据时,通过观察葡萄酒质量直方图,我们发现大部分质量集中在 5、6 和 7 这几个区间。这使得预测边缘质量区间变得更具挑战性,因为模型缺乏足够的案例来学习。为解决这个问题,有以下几种方法:
- 平衡数据集 :对于关键建模项目,可以通过移除一些中间类别或获取更多边缘案例来平衡数据集。
- 移除弱特征 :在某些情况下,弱特征会使模型产生混淆。通过移除它们,不仅可以提高模型得分,还能加快模型运行速度。可以使用基于树的模型,这些模型会返回某种形式的变量重要性。具体操作步骤如下:
1. 获取按重要性降序排列的特征列表。
2. 仅使用最佳特征尝试模型。
3. 不断添加特征,直到得分不再提高,最终得到一组有效的特征(这称为前向特征选择)。

我们尝试将所有类别数据上限设置为 500 行,代码如下:

# 查看数据分布
wine_balanced_df['quality'].value_counts()

输出结果:

7    500
6    500
5    500
4    216
8    193
3     30
9      5
Name: quality, dtype: int64

这种方法使中心类别周围的数据趋于平缓,但边缘仍然极度不平衡。更好的方法是对质量类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值