自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(25)
  • 收藏
  • 关注

原创 机器学习实战——基于CART决策树实现葡萄酒品质预测(附完整代码和可视化)

随着机器学习技术的发展,决策树作为一种简单而强大的算法,在许多领域得到了广泛的应用。本文将通过一个具体的案例——使用决策树模型预测葡萄酒品质,来详细介绍决策树的工作原理、构建过程以及评估方法。我们将利用Python编程语言及其相关的科学计算库(如NumPy、Pandas)和机器学习库(如Scikit-learn)来进行数据分析与模型训练。

2024-11-23 14:56:51 1991

原创 Python机器学习实战——逻辑回归(附完整代码和结果)

在本篇博文中,我们将详细介绍如何使用Python及其相关的机器学习库来构建一个用于葡萄酒分类的模型。我们不仅会讲解代码的具体实现,还会深入探讨背后的理论基础,帮助读者更好地理解和应用这些技术。

2024-11-19 10:31:24 1652

原创 【机器视觉】Blob分析详解

在机器视觉领域,Blob分析是一种重要的图像处理技术,用于从图像中提取和识别物体。本文将详细介绍Blob分析的基本概念、算法实现以及在实际应用中的案例,帮助读者理解并掌握这一技术。

2024-11-13 14:42:20 2157

原创 【机器视觉】三种常见的模板匹配算法

模板匹配技术是一项强大且灵活的图像处理技术。通过结合图像金字塔、基于形状的匹配(包括形状特征提取、模板创建、匹配过程等)、基于灰度的匹配以及变形匹配等方法,我们可以应对各种复杂的图像匹配问题。在未来,随着计算机视觉技术的不断发展,模板匹配技术将在更多领域发挥重要作用。

2024-11-07 16:05:57 4695

原创 PyTorch图像分类实战——基于ResNet18的RAF-DB情感识别(附完整代码和结果图)

在本文中,我们将详细介绍如何使用PyTorch框架,结合ResNet18模型,进行图像分类任务。这里我们选择了一个情感识别数据集——RAF-DB(Real-world Affective Faces Database),来进行实验。通过本文,你将学习到如何准备数据、构建模型、训练模型、评估模型,并可视化训练过程中的损失曲线。在本文中,我们深入探讨了如何使用PyTorch框架和ResNet18模型,结合RAF-DB数据集来实现图像情感识别。

2024-10-31 15:15:15 3668

原创 图像分类模型数据集划分教程:如何划分训练集和验证集

在处理图像分类任务时,数据集的划分是一个重要步骤。为了将数据集有效地分为训练集和验证集,我们可以编写一个Python脚本来自动化这一过程。该脚本通过遍历原始数据集中的每个类别,并根据指定的比例随机划分图像到训练集和验证集,从而实现了数据集的自动化划分。同时通过显示进度条和处理完成信息,提供了良好的用户交互体验。

2024-10-31 14:49:48 1191

原创 机器学习实战——基于随机森林与决策树模型的贷款违约预测全过程(附完整代码和可视化分析)

在数据科学领域,分类问题是一类常见且重要的任务。分类模型旨在根据输入的特征数据预测目标变量的类别。本文将通过一个实际的案例,使用Python编程语言及sklearn机器学习库,演示如何使用随机森林和决策树这两种经典的分类算法进行模型训练、评估及对比。我们将从数据预处理、模型训练、性能评估及可视化等方面进行详细讲解。

2024-10-30 11:47:20 1944

原创 【YOLO标签转换】JSON格式标签转换为YOLO格式标签详细教程(附完整代码)

在目标检测任务中,YOLO(You Only Look Once)是一种非常流行的算法。YOLO将目标检测问题转换为回归问题,从而大大提升了检测速度。YOLO格式是一种简洁的数据标注格式,通常用于训练和评估YOLO模型。本文将详细介绍如何将标注数据从JSON格式转换为YOLO格式,并附上详细的Python代码实现。

2024-10-29 15:29:56 4400 6

原创 机器学习实战——基于粒子群优化算法(PSO)优化支持向量回归(SVR)模型(附完整代码)

本文详细介绍了如何使用粒子群优化算法来优化支持向量回归模型的参数。通过定义目标函数、设置参数范围、执行PSO算法、训练最终模型和评估模型性能等步骤,我们成功找到了最优的参数组合,并展示了模型在验证集上的预测效果。结果可视化部分进一步帮助我们直观地理解了优化过程和模型性能。这种方法不仅适用于SVR模型,还可以扩展到其他机器学习模型的参数优化中。

2024-10-28 22:28:46 2285

原创 Halcon实战——基于NCC模板匹配的芯片检测(附源码)

模板匹配的关键之一在于选择合适的模板区域。为了更精确地进行匹配,我们可以通过算子手动绘制一个矩形,定义图像中需要用作模板的区域。在芯片检测任务中,如何定义模板非常关键。芯片上的很多结构可能是规则性的,定义一个合适的模板区域可以显著提高检测效率。通过手动选择芯片的关键区域作为模板,可以减少无关区域的干扰,并提高匹配的精度和速度。NCC模板匹配是一种基于统计相关性的方法。通过计算模板与测试图像对应区域的相关系数,能够准确地定位目标位置。

2024-10-19 11:48:48 1920

原创 sklearn机器学习实战——基于AdaBoost完成乳腺癌分类(附完整代码和结果图)

在这篇博文中,我们将探讨如何使用机器学习中的集成学习算法——AdaBoost来构建一个分类模型,应用于乳腺癌数据集。我们将介绍从数据预处理到模型评估的各个步骤。AdaBoost(Adaptive Boosting)是一种基于Boosting思想的集成学习算法。Boosting通过将多个弱分类器(比如决策树桩)结合起来,形成一个强大的分类器。每个分类器在数据上进行训练时,关注那些之前被误分类的数据点。其核心思想是通过调整样本权重来增强模型的学习能力。

2024-10-10 21:28:56 2594

原创 Python数字图像处理实战——基于OpenCV实现多种滤波器(附完整代码和结果图)

图像处理是计算机视觉中非常重要的一部分,而滤波器是用于增强图像、减少噪声、检测边缘等的核心工具。通过不同的滤波器,我们可以处理图像中的噪声、模糊和细节,从而让图像在后续的处理步骤中更加清晰和准确。均值滤波高斯滤波中值滤波双边滤波自适应滤波Sobel 边缘检测Scharr 滤波本文演示了几种常见滤波器的使用方法及其处理效果。每种滤波器都有各自的优势和适用场景,在实际应用中,选择合适的滤波器能够有效提高图像处理的效果。

2024-10-10 21:05:24 1709

原创 机器学习实战——基于LightGBM的手写数字识别(附完整代码和结果图)

在本文中,我们将介绍如何利用LightGBM(Light Gradient Boosting Machine)进行手写数字识别任务。我们将使用scikit-learn中的手写数字数据集,经过数据预处理、模型训练、评估和可视化,完整地展示整个流程。

2024-10-08 22:49:16 1230

原创 机器学习实战——基于XGBoost的葡萄酒分类任务(附完整代码和结果图)

本文将通过一个经典的多分类任务——葡萄酒分类问题,展示如何使用XGBoost模型进行分类。我们将使用的wine数据集进行实验,采用数据预处理、模型训练、十折交叉验证,并展示多项评估指标。最后,我们将可视化模型的表现,特别是通过混淆矩阵来分析分类效果。葡萄酒质量数据集(Wine Quality Dataset)是一个经典的多分类数据集,常用于机器学习和统计分析的教学和研究。该数据集最初来自于UCI机器学习库,主要用于预测葡萄酒的品质。

2024-10-08 22:34:08 2024

原创 【目标检测】根据YOLO格式标签提取和保存标注框目标(附完整代码)

在这篇博文中,我们将讨论如何通过Python实现从YOLO标注文件中提取目标检测框,并将检测出的目标区域从图片中截取并保存为单独的图像文件。

2024-10-07 19:17:11 3109 2

原创 Python人脸识别实战——基于Dlib和OpenCV的人脸识别与关键点检测(附完整代码和结果图)

在这篇博文中,将展示如何使用Python中的Dlib库对人脸进行关键点检测,并利用OpenCV绘制关键点。人脸关键点检测是计算机视觉领域的一项重要任务。我们可以通过检测人脸上的特定位置(如眼睛、鼻子、嘴唇等)来分析面部特征。在这篇文章中,我们将基于Dlib库的预训练模型shape_predictor_68_face_landmarks.dat,结合OpenCV进行人脸关键点的绘制。

2024-10-07 13:13:47 5701

原创 sklearn机器学习实战——支持向量机四种核函数分类任务全过程(附完整代码和结果图)

在机器学习分类任务中,支持向量机(SVM, Support Vector Machine)是一种非常强大的算法。SVM模型通过找到决策边界(超平面),以最大化类别之间的间隔(margin)来进行分类。本文将探讨如何使用四种核函数的支持向量机实现分类任务,包括数据预处理、模型训练、交叉验证、性能评估和可视化的完整流程。附完整代码和结果图

2024-10-06 19:44:25 2771

原创 sklearn机器学习实战——随机森林回归与特征重要性分析全过程(附完整代码和结果图)

本文通过加州房价数据集,详细介绍了如何使用随机森林回归进行预测。首先进行数据预处理和标准化,然后构建了随机森林回归模型,并使用十折交叉验证评估了模型的性能,最终通过多种评估指标对模型进行评价。此外,我们还分析了各个特征的重要性,进一步解释了模型的决策依据。随机森林凭借其鲁棒性与优秀的泛化能力,在回归任务中表现出了良好的预测效果。

2024-10-06 19:06:51 6672

原创 机器学习可视化教程——混淆矩阵与回归图

在机器学习项目中,数据的可视化是评估模型表现的关键步骤。通过可视化,我们可以直观地看出模型的预测效果、数据分布和误差。本文将介绍如何绘制回归图(用于回归任务)和混淆矩阵(用于分类任务)。

2024-10-05 10:59:39 1070

原创 PyQt5界面美化教程:一键切换四种风格

在现代软件开发中,用户界面的设计与美化是提升用户体验的重要环节。本文将介绍如何使用 PyQt5 和 QCandyUi 库轻松实现一键切换多种风格的功能。通过这一方法,开发者可以迅速地在不同的视觉风格之间切换,避免了繁琐的调色过程,使界面设计变得更快捷、更高效!

2024-10-05 10:36:33 3524

原创 YOLO数据集划分教程:如何划分训练、验证和测试集

在目标检测任务中,YOLO是一种非常流行的检测模型。训练YOLO模型时,数据集通常需要划分为训练集、验证集和测试集,以评估模型的性能。本文将介绍如何使用Python进行数据集的划分,并将图像和标签文件按相应比例划分到不同文件夹中。

2024-10-04 16:01:05 10084 6

原创 LSTM时间序列模型实战——预测上证指数走势

本文将带领大家从数据预处理、基于TensorFlow的LSTM模型构建与训练,到最终预测结果的可视化,深入探讨如何使用LSTM模型预测上证指数的收盘价走势。

2024-10-04 15:33:21 2680 1

原创 【目标检测】AutoDL服务器训练YOLOv8全过程(保姆级教程)

在计算机视觉领域,目标检测技术应用广泛。YOLOv8 因其高效的实时检测能力和优越的性能备受关注,为了更好地利用这一强大的工具,本文将详细介绍如何通过 AutoDL 服务器训练 YOLOv8 模型。无论是服务器的配置、数据集的准备,还是模型的训练与预测,本文将一步步引导你完成整个流程。希望本教程能够帮助你快速上手,并为你的深度学习项目奠定坚实基础。

2024-10-03 15:25:07 4755 2

原创 机器学习最全合集——基于sklearn快速实现11种机器学习回归模型的训练与评估

本文旨在介绍如何使用scikit-learn实现11种流行的机器学习回归模型,你将学习如何从数据准备阶段入手,依次进行模型的构建、训练和优化,最终完成模型的性能评估。本文将通过简洁明了的代码示例,帮助你快速掌握每个回归模型的使用方法,并深入理解每种模型的特点、优缺点及其适用场景。

2024-10-03 00:11:39 1565

原创 机器学习最全合集——基于sklearn快速实现11种机器学习分类模型的训练与评估

sklearn库提供了丰富的工具和接口,使得构建机器学习模型变得更加便捷。本文将详细介绍如何使用库实现 11 种流行的分类模型。本文将从数据准备开始,逐步进行模型的搭建、训练和评估过程。通过简单的示例,本文将展示如何快速实施这些模型,帮助你更好地理解每种模型的特性和应用场景。小白也能快速上手机器学习!

2024-10-02 01:54:58 2795

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除