3、Hadoop-YARN 集群搭建指南

Hadoop-YARN 集群搭建指南

1. 引言

YARN 是 Apache Hadoop 的一个子项目,自 Hadoop 2.0 版本引入,它取代了 Hadoop 1.x 版本的旧 MapReduce 框架,并随 Hadoop 2.x 版本一同发布。本文将为 Hadoop-YARN 用户提供详细的安装和配置指南。Hadoop-YARN 集群可以配置为单节点或多节点集群,下面将详细介绍相关内容。

2. Hadoop 2.x 基础组件

Apache Hadoop 2.x 版本主要由三个关键组件组成:
- Hadoop 分布式文件系统(HDFS)
- 另一种资源协调器(YARN)
- MapReduce API(作业执行、MRApplicationMaster、JobHistoryServer 等)

Hadoop 2.x 集群由两个主进程管理:NameNode 和 ResourceManager。集群中的所有从节点运行 DataNode 和 NodeManager 进程,作为集群的工作守护进程。NameNode 和 DataNode 守护进程属于 HDFS,而 ResourceManager 和 NodeManager 属于 YARN。

单节点 Hadoop-YARN 配置需要在同一系统上运行所有四个进程,通常用于学习目的。在生产环境中,建议使用多节点集群,并为 NameNode 和 ResourceManager 守护进程分配单独的节点。随着集群中从节点数量的增加,主节点对内存、处理器和网络的需求也会增加。

3. 支持的平台

安装 Hadoop-YARN 集群可以使

内容概要:本文档围绕“并_离网风光互补制氢合成氨系统”的容量规划与调度优化问题展开,重点介绍基于Cplex求解器的数学优化模型构建与Matlab代码实现方法。内容涵盖风能、太阳能、电解水制氢、合成氨工艺等多能源耦合系统的建模,针对并网与离网两种运行模式设计优化目标(如最小化投资与运行成本、提高可再生能源消纳率),并通过Matlab调用Cplex求解混合整数线性规划(MILP)问题,实现系统容量配置与运行调度的联合优化。文中强调对实际科研论文的复现,提供完整的代码资源与YALMIP建模工具包,帮助读者掌握能源系统优化的核心建模思路与求解技术。; 适合人群:具备一定Matlab编程基础,对可再生能源系统、综合能源系统优化、数学规划(如线性规划、整数规划)有一定了解的研究生、科研人员或从事新能源系统设计的工程技术人员。; 使用场景及目标:① 学习如何构建风光制氢合成氨这类复杂多能系统的优化模型;② 掌握利用YALMIP+Matlab+Cplex进行能源系统容量配置与调度优化的全流程实现方法;③ 复现高水平学术论文中的优化模型,为自身科研工作提供技术参考和代码基础。; 阅读建议:建议读者结合提供的网盘资源,先理解系统结构与数学模型,再逐步调试Matlab代码,重点关注目标函数、约束条件的构建方式以及YALMIP的语法应用,通过修改参数和场景设置加深对优化模型的理解。【复现】并_离网风光互补制氢合成氨系统容量-调度优化分析【Cplex求解】(Matlab代码实现)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值