题目
实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列。
如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列)。
必须原地修改,只允许使用额外常数空间。
以下是一些例子,输入位于左侧列,其相应输出位于右侧列。
1,2,3 → 1,3,2
3,2,1 → 1,2,3
1,1,5 → 1,5,1
解法
标准的“下一个排列”算法可以描述为:
- 从后向前查找第一个相邻升序的元素对 (i,j),满足 A[i] < A[j]。此时 [j,end) 必然是降序
- 在 [j,end) 从后向前查找第一个满足 A[i] < A[k] 的 k。A[i]、A[k] 分别就是上文所说的“小数”、“大数”
- 将 A[i] 与 A[k] 交换
- 可以断定这时 [j,end) 必然是降序,逆置 [j,end),使其升序
- 如果在步骤 1 找不到符合的相邻元素对,说明当前 [begin,end) 为一个降序顺序,则直接跳到步骤 4
该方法支持数据重复,且在 C++ STL 中被采用。
请注明出处。
class Solution {
public:
void nextPermutation(vector<int>& nums) {
int len = nums.size();
if(len == 0 || len == 1)
return ;
int i = len - 2, j = len - 1,k = len - 1;
for(;i >= 0 && nums[i] >= nums[j];)
{
i--;
j--;
}
if(i < 0)
{
reverse(nums.begin(),nums.end());
return ;
}
for(; k >= j ; k--)
if(nums[k] > nums[i])
{
swap(nums[k],nums[i]);
break;
}
reverse(nums.begin() + j,nums.end());
return ;
}
};