常用的 Normalization 方法:BN、LN、IN、GN(附代码&链接)

640?wx_fmt=png

来源:知乎

本文约2700字,建议阅读8分钟

本文带你了解并区分常用的Normalization。


常用的Normalization方法主要有:
  • Batch Normalization(BN,2015年)

  • Layer Normalization(LN,2016年)

  • Instance Normalization(IN,2017年)

  • Group Normalization(GN,2018年)


它们都是从激活函数的输入来考虑、做文章的,以不同的方式 对激活函数的输入进行 Norm  的。


我们将输入的 feature map shape 记为[N, C, H, W],其中N表示batch size,即N个样本;C表示通道数;H、W分别表示特征图的高度、宽度。这几个方法主要的区别就是在:


  1. BN是在batch上,对N、H、W做归一化,而保留通道 C 的维度。BN对较小的batch size效果不好。BN适用于固定深度的前向神经网络,如CNN,不适用于RNN;

  2. LN在通道方向上,对C、H、W归一化,主要对RNN效果明显;

  3. IN在图像像素上,对H、W做归一化,用在风格化迁移;

  4. GN将channel分组,然后再做归一化。


640?wx_fmt=jpeg

每个子图表示一个特征图,其中N为批量,C为通道,(H,W)为特征图的高度和宽度。 通过蓝色部分的值来计算均值和方差,从而进行归一化。

如果把特征图640?wx_fmt=png比喻成一摞书,这摞书总共有 N 本,每本有 C 页,每页有 H 行,每行 有W 个字符。


  1. BN 求均值时,相当于把这些书按页码一一对应地加起来(例如第1本书第36页,第2本书第36页......),再除以每个页码下的字符总数:N×H×W,因此可以把 BN 看成求“平均书”的操作(注意这个“平均书”每页只有一个字),求标准差时也是同理。

  2. LN 求均值时,相当于把每一本书的所有字加起来,再除以这本书的字符总数:C×H×W,即求整本书的“平均字”,求标准差时也是同理。

  3. IN 求均值时,相当于把一页书中所有字加起来,再除以该页的总字数:H×W,即求每页书的“平均字”,求标准差时也是同理。

  4. GN 相当于把一本 C 页的书平均分成 G 份,每份成为有 C/G 页的小册子,求每个小册子的“平均字”和字的“标准差”。


  一、 Batch Normalization, BN (‘重点、重点、重点’,重要的事情说三遍)


论文链接: https://arxiv.org/pdf/1502.03167.pdf


为什么要进行BN呢?


  1. 在深度神经网络训练的过程中,通常以输入网络的每一个mini-batch进行训练,这样每个batch具有不同的分布,使模型训练起来特别困难。

  2. Internal Covariate Shift (ICS) 问题:在训练的过程中,激活函数会改变各层数据的分布,随着网络的加深,这种改变(差异)会越来越大,使模型训练起来特别困难,收敛速度很慢,会出现梯度消失的问题。


BN的主要思想:针对每个神经元,使数据在进入激活函数之前,沿着通道计算每个batch的均值、方差,‘强迫’数据保持均值为0,方差为1的正态分布,避免发生梯度消失。具体来说,就是把第1个样本的第1个通道,加上第2个样本第1个通道 ...... 加上第 N 个样本第1个通道,求平均,得到通道 1 的均值(注意是除以 N×H×W 而不是单纯除以 N,最后得到的是一个代表这个 batch 第1个通道平均值的数字,而不是一个 H×W 的矩阵)。求通道 1 的方差也是同理。对所有通道都施加一遍这个操作,就得到了所有通道的均值和方差。


BN的使用位置:全连接层或卷积操作之后,激活函数之前。


BN算法过程:

  • 沿着通道计算每个batch的均值μ 
  • 沿着通道计算每个batch的方差σ² 
  • 做归一化
  • 加入缩放和平移变量 γ 和 β

640?wx_fmt=png

其中 ε 是一个很小的正值, 比如640?wx_fmt=png 。 加入缩放和平移变量的原因是: 保证每一次数据经过归一化后还保留原有学习来的特征,同时又能完成归一化操作,加速训练。  这两个参数是用来学习的参数。

BN的作用:
  1. 允许较大的学习率;

  2. 减弱对初始化的强依赖性;

  3. 保持隐藏层中数值的均值、方差不变,让数值更稳定,为后面网络提供坚实的基础;

  4. 有轻微的正则化作用(相当于给隐藏层加入噪声,类似Dropout)。


BN存在的问题:
  1. 每次是在一个batch上计算均值、方差,如果batch size太小,则计算的均值、方差不足以代表整个数据分布。

  2. batch size太大:

    会超过内存容量;

    需要跑更多的epoch,导致总训练时间变长;

    会直接固定梯度下降的方向,导致很难更新。


  二、 Layer Normalization, LN

论文链接:

https://arxiv.org/pdf/1607.06450v1.pdf


针对BN不适用于深度不固定的网络(sequence长度不一致,如RNN),LN对深度网络的某一层的所有神经元的输入按以下公式进行normalization操作。

640?wx_fmt=png

LN中同层神经元的输入拥有相同的均值和方差,不同的输入样本有不同的均值和方差。

对于特征图  640?wx_fmt=png  ,LN 对每个样本的 C、H、W 维度上的数据求均值和标准差,保留 N 维度。 其均值和标准差公式为:

640?wx_fmt=jpeg

Layer Normalization (LN) 的一个优势是不需要批训练,在单条数据内部就能归一化。

LN不依赖于batch size和输入sequence的长度,因此可以用于batch size为1和RNN中。 LN用于RNN效果比较明显,但是在CNN上,效果不如BN。


   三、 Instance Normalization, IN

论文链接:https://arxiv.org/pdf/1607.08022.pdf


IN针对图像像素做normalization,最初用于图像的风格化迁移。 在图像风格化中,生成结果主要依赖于某个图像实例,feature map 的各个 channel 的均值和方差会影响到最终生成图像的风格。 所以对整个batch归一化不适合图像风格化中,因而对H、W做归一化。 可以加速模型收敛,并且保持每个图像实例之间的独立。

对于,IN 对每个样本的 H、W 维度的数据求均值和标准差,保留 N 、C 维度,也就是说,它只在 channel 内部求均值和标准差,其公式如下:

640?wx_fmt=jpeg


  四、 Group Normalization, GN
(拿小本本get一下)


论文链接:https://arxiv.org/pdf/1803.08494.pdf


GN是为了解决BN对较小的mini-batch size效果差的问题。 GN适用于占用显存比较大的任务,例如图像分割。 对这类任务,可能 batch size 只能是个位数,再大显存就不够用了。 而当 batch size 是个位数时,BN 的表现很差,因为没办法通过几个样本的数据量,来近似总体的均值和标准差。 GN 也是独立于 batch 的,它是 LN 和 IN 的折中。

GN的主要思想: 在 channel 方向 group,然后每个 group 内做 Norm,计算 640?wx_fmt=png 的均值和方差,这样就与batch size无关,不受其约束。

具体方法: GN 计算均值和标准差时,把每一个样本 feature map 的 channel 分成 G 组,每组将有 C/G 个 channel,然后将这些 channel 中的元素求均值和标准差。 各组 channel 用其对应的归一化参数独立地归一化。

640?wx_fmt=jpeg

伪代码如下:

640?wx_fmt=jpeg

代码如下:

 
     

def GroupNorm(x, gamma, beta, G=16):

# x_shape:[N, C, H, W]
results = 0.
eps = 1e-5
x = np.reshape(x, (x.shape[0], G, x.shape[1]/16, x.shape[2], x.shape[3]))

x_mean = np.mean(x, axis=(2, 3, 4), keepdims=True)
x_var = np.var(x, axis=(2, 3, 4), keepdims=True0)
x_normalized = (x - x_mean) / np.sqrt(x_var + eps)
results = gamma * x_normalized + beta
return results


  总结

我们将feature map shape 记为[N, C, H, W]。 如果把特征图 640?wx_fmt=png 比喻成一摞书,这摞书总共有 N 本,每本有 C 页,每页有 H 行,每行 有W 个字符。

640?wx_fmt=jpeg


  1. BN是在batch上,对N、H、W做归一化,而保留通道 C 的维度。BN 相当于把这些书按页码一一对应地加起来,再除以每个页码下的字符总数:N×H×W。

  2. LN在通道方向上,对C、H、W归一化。LN 相当于把每一本书的所有字加起来,再除以这本书的字符总数:C×H×W。

  3. IN在图像像素上,对H、W做归一化。IN 相当于把一页书中所有字加起来,再除以该页的总字数:H×W。

  4. GN将channel分组,然后再做归一化。GN 相当于把一本 C 页的书平均分成 G 份,每份成为有 C/G 页的小册子,对每个小册子做Norm。


另外,还需要注意它们的映射参数γ和β的区别: 对于 BN,IN,GN, 其γ和β都是维度等于通道数 C 的向量。 而对于 LN,其γ和β都是维度等于 normalized_shape 的矩阵。

最后,BN 和 IN 可以设置参数: momentum和track_running_stats来获得在整体数据上更准确的均值和标准差。LN 和 GN 只能计算当前 batch 内数据的真实均值和标准差。

本文转自知乎作者G-kdom文章:常用的 Normalization 方法:BN、LN、IN、GN。

文章地址:

https://zhuanlan.zhihu.com/p/72589565


编辑:于腾凯

校对:林亦霖640?wx_fmt=jpeg

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值