原创 | 工业场景中的预测性维护

本文探讨了在工业场景中利用预测性维护预防安全事故,结合监督学习和异常检测方法,如统计异常检测、基于距离的方法、重建误差等。通过机器学习模型和异常检测算法,如PCA、LSTM-GAN、STL,提升故障预警的准确性,旨在减少恶性事故的发生,提高生产安全性。
摘要由CSDN通过智能技术生成

在社会整体安全水平日益提升的大背景下,因工业设备的故障导致的重大事故愈发受到社会的深切关注。以化工行业为例,令人痛心的安全事故屡屡发生,2019年甚至被称为化工行业的“本命年”,自19年年初至19年4月25日,以响水“3•21”爆炸事故为代表的重大事故致使148人死亡或失联。

生产管理学中著名的“海恩法则”指出: 每一起严重事故的背后,必然有29次轻微事故和300起未遂先兆以及1000起事故隐患。经分析,相当多的恶性事故发生前,现场的传感器数据都表现出了明显的异常,完全可以通过监测、报警等方式及时预警并启动预案,防患于未然。本文结合个人实践经验,主要从监督学习与异常检测这两种视角看待问题,尝试在适当的假定下解决之。

监督学习视角

如果数据容易标记,可以标记到时间窗,做有监督学习分类模型。这里分为两种方式:

第一种是传统特征工程设计,将生成的特征输入到机器学习模型中。工业场景中常见的数据不平衡、样本量小、过拟合等问题,都应纳入基本考量。

图 机器学习分类框架

第二种是:用NN模型直接进行序列分类。值得一提的是,LSTM-FCN和ALSTM-FCN在序列信号进行分类的任务中表现出很好的效果。

 

在许多工业场景中,手工设计特征需要工业领域甚至是特定工艺的深入业务理解,要设计基本统计、功率谱参数、业务衍生等多层次特征。特别是业务衍生特征,如果现场工程师提供了一个超强的特征(即magic feature),例如某真空蒸发器在同时出现负压超过68kPa,温度超过90℃的情况下极易致使损坏,那么该真空蒸发器的预警建模难度就会大大降低。

树模型给出的特征重要度可为特征提供优良的可解释性,对异常追根溯源有很好的指导作用。

<
  • 3
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值