独家 | 利用AI进行高精度图像编辑︰EditGAN(附链接)

EditGAN是由NVIDIA、多伦多大学和麻省理工学院合作研发的生成对抗网络模型,能在低注释训练数据下实现高精度图像编辑。该框架允许用户通过简单指令对图像进行精准编辑,如改变物体特征,同时保持图像质量。EditGAN的潜力在于简化摄影师和内容创作者的工作流程,提升创新和数字艺术水平。未来,这一技术可能应用于视频编辑、生成定制数据集以及3D内容创作等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ca6ffbcbc5d08238900cbf319e27c6c7.png

作者︰Nathan Horrocks
翻译︰Gabriel Ng
校对:张睿毅


本文约3300字,建议阅读5分钟
本文为大家介绍了如何利用AI进行高精度图像编辑。

71ebd4217c4b45e48454f3a068df1562.png

处理猫咪、汽车、甚至是古董画的照片,对于这项工作的需求,在以前从未能像现在一样容易被满足,这归功于一个生成对抗网络 (GAN) 模型,叫做EditGAN。这项工作出自NVIDIA、多伦多大学和麻省理工学院的研究员们,部署自 DatasetGAN (一个人工智能视觉模型,训练只须用少如 16张人工注释的图像,性能虽然和其他方法一样高效,但其他方法需要100倍更多的图像。EditGAN 有先前模型提供的强大功能,并赋能用户去处理或操控想要的图像,例如绘图,所用的命令很简单,且原始图像质量不降低。

什么是EditGAN?

根据这篇论文

(https://arxiv.org/pdf/2111.03186.pdf):EditGAN 是第一个 GAN 驱动,图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值