MIT算法圣经书《算法导论》第四版

feb7b48cb3e21fcaf28918e2ba97f8aa.png

来源:专知
本文为书籍介绍,建议阅读5分钟本书将严谨性和全面性融为一体,深入讨论各类算法,并着力使这些算法的设计和分析能为各个层次的读者接受。

faf10d832d3dd6479aadc6315036cb1b.png

在有关算法的书中,有一些叙述非常严谨,但不够全面;另一些涉及了大量的题材,但又缺乏严谨性。《算法导论(原书第4版)/计算机科学丛书》将严谨性和全面性融为一体,深入讨论各类算法,并着力使这些算法的设计和分析能为各个层次的读者接受。全书各章自成体系,可以作为独立的学习单元;算法以英语和伪代码的形式描述,具备初步程序设计经验的人就能看懂;说明和解释力求浅显易懂,不失深度和数学严谨性。


《算法导论(原书第4版)/计算机科学丛书》全书选材经典、内容丰富、结构合理、逻辑清晰,对本科生的数据结构课程和研究生的算法课程都是非常实用的教材,在IT专业人员的职业生涯中,《算法导论(原书第4版)/计算机科学丛书》也是一本案头必备的参考书或工程实践手册。

算法书籍的全面更新,在二分图,在线算法,机器学习,和其他主题的匹配的新材料。

一些关于算法的书是严格但不完整的;另一些则涵盖了大量材料,但缺乏严谨。《算法导论》独特的结合了严谨和全面性。它深入地涵盖了广泛的算法,但通过使用伪代码的自包含章节和算法,使其设计和分析对所有层次的读者都是可访问的。第一版出版以来,《算法导论》已经成为全球主要算法的文本在大学以及专业人士的标准参考。这第四版已经全面更新,在二分图的匹配,在线算法和机器学习的新章节,以及解决递归方程,哈希表,潜在函数和后缀数组等主题的新材料。

每一章都是相对独立的,呈现一个算法,一个设计技术,一个应用领域,或一个相关的主题,并可以作为一个学习单元。算法是用英语和伪代码描述的,只要做过一点编程,任何人都可以读懂。这些解释都是基本的,但不牺牲报道的深度或数学的严谨性。第四版有140个新练习和22个新问题,并添加了颜色以改善视觉演示。文章经过了全面的修改,更清晰、更个性化、更中性。该书的网站提供了补充材料。

地址:

https://mitpress.mit.edu/books/introduction-algorithms-fourth-edition

作者介绍:

Thomas H. Cormen (托马斯·科尔曼),达特茅斯学院计算机科学系教授、系主任。目前的研究兴趣包括:算法工程、并行计算、具有高延迟的加速计算。他分别于1993年、1986年获得麻省理工学院电子工程和计算机科学博士、硕士学位,师从Charles E. Leiserson教授。由于他在计算机教育领域的突出贡献,Cormen教授荣获2009年ACM杰出教员奖。

Charles E. Leiserson(查尔斯·雷瑟尔森),麻省理工学院计算机科学与电气工程系教授,Margaret MacVicar Faculty Fellow。他目前主持MIT超级计算技术研究组,并是MIT计算机科学和人工智能实验室计算理论研究组的成员。他的研究兴趣集中在并行和分布式计算的理论原理,尤其是与工程现实相关的技术研究。Leiserson教授拥有卡内基·梅隆大学计算机科学博士学位,还是ACM、IEEE和SIAM的会士。

Ronald L. Rivest (罗纳德·李维斯特),现任麻省理工学院电子工程和计算机科学系安德鲁与厄纳·维特尔比(Andrew and Erna Viterbi)教授。他是MIT计算机科学和人工智能实验室的成员,并领导着其中的信息安全和隐私中心。他1977年从斯坦福大学获得计算机博士学位,主要从事密码安全、计算机安全算法的研究。他和Adi Shamir和Len Adleman一起发明了RSA公钥算法,这个算法在信息安全中获得大的突破,这一成果也使他和Shamir、Adleman一起得到2002年ACM图灵奖。他现在担任国家密码学会的负责人。

Clifford Stein(克利福德·斯坦),哥伦比亚大学计算机科学系和工业工程与运筹学系教授,他还是工业工程与运筹学系的系主任。在加入哥伦比亚大学大学之前,他在达特茅斯学院计算机科学系任教9年。Stein教授拥有MIT硕士和博士学位。他的研究兴趣包括:算法的设计与分析,组合优化、运筹学、网络算法、调度、算法工程和生物计算。

7c3eeff4f3d775898284bf6db4d2cdf4.png

a09a84bd71c6032311312f595ab31213.png

65c1c6d1b37d34c73818d5f5993656c2.png

55ac3fd5c150a3033703331788b26364.png

a468d4ac2c20c36bd8903b681a945496.png

55172e1a26ab1c3244bef11d2774f53a.png

0c7089edeea5ee64ff595c8ab43495ee.png

5f8a60fe6445a4f04d2f4df95c74b147.png

<think>好的,用户现在问的是关于机械臂的看法和学习路线。首先,我需要回顾之前的对话,用户之前询问了末端采摘机械手的设计与控制应用创新,现在转向更广泛的机械臂领域,可能对机械臂的整体认识和学习方法感兴趣。 用户可能是学生或刚进入该领域的研究者,想要了解如何系统地学习机械臂相关知识。他们可能对机械臂的应用、核心技术以及学习路径不太清楚,需要从基础到进阶的指导。 首先,我需要整理机械臂的主要应用领域,比如工业、医疗、服务等,帮助用户建立全面的认识。然后分析核心技术,包括运动学、动力学、控制理论、感知与决策等模块,这部分可能需要结合之前的采摘机械手例子,但扩展到更广泛的机械臂。 学习路线部分,用户可能需要分阶段的建议,比如数学基础、编程技能、理论学习、实践项目等。要强调数学的重要性,如线性代数、微积分、几何,这些是运动学和动力学的基础。同时,编程方面,Python和C++是必备的,ROS(机器人操作系统)也是关键工具。 还要考虑用户可能的实践需求,建议他们从仿真环境开始,如Gazebo或V-REP,再过渡到实际硬件。推荐经典教材和在线资源,比如《机器人学导论》和Coursera的相关课程。同时,提醒关注前沿技术,如AI在机械臂中的应用,以及多学科交叉的趋势。 最后,要总结机械臂的发展前景,鼓励用户结合兴趣选择细分方向,保持持续学习。需要确保回答结构清晰,步骤明确,语言简洁,避免过于学术化,让不同背景的用户都能理解。同时,检查是否有遗漏的重要点,比如开源项目或社区资源,这些对自学很有帮助。</think>以下是关于机械臂的系统认知与学习路线指南,结合技术本质与工程实践需求展开说明: --- ### 一、机械臂技术本质解析 #### 1. 核心价值维度 - **精度维度** - 工业级:重复定位精度$<±0.02\ \text{mm}$(如KUKA KR QUANTEC) - 协作型:绝对定位精度$<±0.1\ \text{mm}$(UR5e参数) - **负载-自重比** - 传统机械臂:$1:8$(如负载$20\ \text{kg}$自重$160\ \text{kg}$) - 新型轻量化:$1:4$(碳纤维+镁合金结构) #### 2. 关键技术模块 ```mermaid graph TD A[机械臂系统] --> B[运动学] A --> C[动力学] A --> D[控制理论] A --> E[感知与决策] B --> B1[正运动学DH模型] B --> B2[逆运动学数值解] C --> C1[拉格朗日方程] C --> C2[牛顿-欧拉递推] D --> D1[PID控制] D --> D2[阻抗控制] E --> E1[视觉伺服] E --> E2[力觉反馈] ``` --- ### 二、系统学习路线规划(分阶段) #### 阶段1:数学与编程基础(建议时长:3个月) - **数学工具** - 线性代数:矩阵运算、特征值分解(推荐《Linear Algebra Done Right》) - 微分几何:李群SO(3)/SE(3)(重点理解$\mathfrak{se}(3)$李代数) - 优化理论:梯度下降法、QP求解器(CVXPY实践) - **编程技能** - Python:NumPy实现DH参数计算(代码示例) ```python def dh_matrix(theta, d, a, alpha): return np.array([ [np.cos(theta), -np.sin(theta)*np.cos(alpha), np.sin(theta)*np.sin(alpha), a*np.cos(theta)], [np.sin(theta), np.cos(theta)*np.cos(alpha), -np.cos(theta)*np.sin(alpha), a*np.sin(theta)], [0, np.sin(alpha), np.cos(alpha), d], [0, 0, 0, 1] ]) ``` - C++:ROS功能包开发(重点学习catkin工具链) #### 阶段2:核心理论掌握(建议时长:6个月) 1. **运动学深度实践** - 正运动学:DH参数法建模(完成6轴机械臂建模实验) - 逆运动学: - 解析法(Pieper准则应用) - 数值法(牛顿-拉夫森法实现,收敛条件$\|e\|<0.001\ \text{mm}$) 2. **动力学与控制** - 动力学建模: $$ \tau = M(q)\ddot{q} + C(q,\dot{q}) + G(q) $$ 使用SymPy推导2自由度机械臂方程 - 控制算法: - 计算力矩控制(反馈线性化) - 自适应控制(Lyapunov稳定性证明) #### 阶段3:系统集成实战(建议时长:持续迭代) - **仿真环境搭建** - Gazebo+MoveIt!实现避障规划(RRT*算法调参) - CoppeliaSim验证动力学模型(摩擦系数$\mu \in [0.1,0.6]$设置) - **硬件在环开发** - EtherCAT总线控制(周期$1\ \text{ms}$) - 力控实验(六维力传感器数据融合) --- ### 三、关键学习资源 1. **经典著作** - 《机器人学导论》John J. Craig(运动学必读) - 《Robot Dynamics and Control》Spong(动力学圣经) 2. **开源项目** - ROS-Industrial(工业机械臂标准接口) - Drake(MIT动力学仿真框架) 3. **实验平台** - UR3+Robotiq夹爪(协作机器人入门套件) - Franka Emika(阻抗控制研究平台) --- ### 四、前沿方向建议 1. **AI融合方向** - 使用PPO算法训练抓取策略(奖励函数设计:$r_t = -\|e_p\| - 0.1\|e_o\|$) - GNN用于多机协作路径规划 2. **新型驱动技术** - 仿生肌肉驱动(McKibben气动肌肉$\sigma_{max}=2\ \text{MPa}$) - 压电陶瓷微操作(位移分辨率$1\ \text{nm}$) 3. **数字孪生系统** - 基于Digital Twin的预测维护(LSTM预测故障准确率$>92\%$) --- ### 五、发展认知 - **技术瓶颈**: - 高速运动下的振动抑制(需满足$\omega_n > 50\ \text{Hz}$) - 非结构化环境自适应(如未知物体抓取成功率$<65\%$) - **趋势判断**: 未来5年协作机器人市场将保持$30\%$年复合增长率,**柔顺控制**与**AI视觉**成为差异化竞争核心 建议学习者结合自身背景选择细分方向(如医疗机器人需加强运动规划研究,工业场景侧重精度与可靠性),持续关注ICRA、IROS等顶级会议最新成果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值