来源:专知
本文为书籍介绍,建议阅读5分钟本文内容为使深度学习易于理解的基本数学知识。
https://nostarch.com/math-deep-learning
深度学习无处不在,这使得AI的强大驱动力成为更多STEM专业人士需要了解的东西。学习使用哪个库命令是一回事,但要真正理解这一原则,您需要掌握使之正确的数学概念。本书将为您提供概率论、统计学、线性代数和微分学等主题的工作知识,这些是使深度学习易于理解的基本数学知识,也是成功练习深度学习的关键。
这四个子领域中的每一个都与Python代码和实际操作的示例相关联,这些示例弥合了纯数学及其在深度学习中的应用之间的差距。章节建立在彼此的基础上,基本的主题,如贝叶斯定理,然后是更高级的概念,如使用向量、矩阵和函数的导数训练神经网络。在探索和实现深度学习算法时,您将最终使用所有这些数学知识,包括反向传播和梯度下降——这些基本算法使AI革命成为可能。
你将学习:
概率规则,概率分布,贝叶斯概率
使用统计数据来理解数据集和评估模型
如何操作向量和矩阵,并利用它们在神经网络中移动数据
如何用线性代数实现主成分分析和奇异值分解
如何应用改进版本的梯度下降,如RMSprop, Adagrad和Adadelta
一旦你通过AI编程的镜头理解了本书中呈现的核心数学概念,你就会有基础的知识来轻松跟随和使用深度学习。
目录内容:
Introduction
Chapter 1: Setting the Stage
Chapter 2: Probability
Chapter 3: More Probability
Chapter 4: Statistics
Chapter 5: Linear Algebra
Chapter 6: More Linear Algebra
Chapter 7: Differential Calculus
Chapter 8: Matrix Calculus
Chapter 9: Data Flow in Neural Networks
Chapter 10: Backpropagation
Chapter 11: Gradient Descent
Appendix: Going Further
View the Copyright page
View the detailed Table of Contents
View the Index