【AAAI2025】TimeDP:通过领域提示学习生成多领域时间序列

928c04313f295e87e380f97c6f307fba.png

来源:专知
本文约1000字,建议阅读5分钟
本文提出了一种基于领域提示的多领域时间序列扩散模型,命名为 TimeDP。

图片

时间序列生成模型对数据增强和隐私保护等应用至关重要。

大多数现有的时间序列生成模型通常是针对一个特定领域的数据进行生成设计的。尽管在其他应用领域中,利用来自不同领域的数据以实现更好的泛化已被证明是有效的,但由于不同真实世界时间序列类别之间模式的巨大差异,这种方法在时间序列建模中仍然面临挑战。

本文提出了一种基于领域提示的多领域时间序列扩散模型,命名为 TimeDP。在 TimeDP 中,我们利用一个时间序列语义原型模块,该模块定义了时间序列原型来表示时间序列的基础,每个原型向量作为“词”代表某种基本的时间序列特征。我们应用了一个原型分配模块,用于提取领域特定的原型权重,从而学习领域提示作为生成条件。在采样过程中,我们从目标领域提取“领域提示”,并利用这些领域提示作为条件生成时间序列样本。实验结果表明,我们的方法在领域内生成质量上优于基线方法,并且在生成未见过领域样本的能力上也表现出色。

代码 — https://github.com/YukhoY/TimeDP

图片

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

16d86bd1807a20991d0a93ef29d8af3f.png

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值