【KDD2022教程】图算法公平性:方法与趋势

56e708407e45f98d22d46f4dd5c6be32.png

来源:专知
本文为教程介绍,建议阅读5分钟算法公平性是一个有吸引力但又具有挑战性的研究课题。

e24ec639942a3d06b647da7a3001d892.jpeg

图是一种普遍存在的数据类型,出现在许多现实世界的应用中,包括社会网络分析、建议和财务安全。尽管这很重要,但几十年的研究已经发展出了丰富的计算模型来挖掘图表。尽管它很繁荣,但最近对潜在的算法歧视的担忧有所增长。图上的算法公平性是一个有吸引力但又具有挑战性的研究课题,它旨在减轻图挖掘过程中引入或放大的偏差。第一个挑战对应于理论挑战,图数据的非IID性质不仅可能使许多现有公平机器学习研究背后的基本假设失效,而且还可能基于节点之间的相互关联而不是现有公平机器学习中的公平定义引入新的公平定义。第二个挑战是关于算法方面的,目的是理解如何在模型准确性和公平性之间取得平衡。本教程旨在(1) 全面回顾最先进的技术,以加强图的算法公平,(2) 启发开放的挑战和未来的方向。我们相信本教程可以使数据挖掘、人工智能和社会科学领域的研究人员和从业者受益。

http://jiank2.web.illinois.edu/tutorial/kdd22/algofair_on_graphs.html

  • Introduction

    • Background and motivations

    • Problem definitions and settings

    • Key challenges

  • Part I: Group Fairness on Graphs

    • Fair graph ranking

    • Fair graph clustering

    • Fair graph embedding

  • Part II: Individual Fairness on Graphs

    • Optimization-based method

    • Ranking-based method

  • Part III: Other Fairness on Graphs

    • Counterfactual fairness

    • Degree-related fairness

  • Part IV: Beyond Fairness on Graphs

    • Related problems

    • Explainability

    • Accountability

    • Robustness

  • Part V: Future Trends

    • Fairness on dynamic graphs

    • Benchmark and evaluation metrics

    • Fairness vs. other social aspects

c5fa157d3ccc8c759b0df24ff54c6594.jpeg

632354e82314ded0e57e027c818b1a57.jpeg

496d038b8a02b9a07997cc78c690cfcc.jpeg

fada05a6d394f80cc9ac468db814f9a7.jpeg

47cc4647b20622c3cf7665fa423d5463.jpeg

cfbc56742688c3024ed33c2d8e4ebc72.jpeg

9517f766cee637e3d27913c783c85d7e.jpeg

003d60bdf175c34c003e5d88add5dfa2.jpeg

e5935d2d2fbc75c4d334277deef13608.jpeg

691f7b22d596702538a61b1dfd679639.jpeg

c3fd911f31826f9e1d2263071404abc9.png

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
算法决策越来越普遍,也越来越有争议。 批评者担心算法工具不透明、不负责任或不公平。 评估这些工具的公平尤其令人担忧,因为它要求我们就公平是什么以及它意味着什么达成一致。 不幸的是,我们没有。 技术文献现在充斥着多种衡量标准,每个衡量标准都声称要评估某个维度的公平。 两种措施脱颖而出。 有人认为,算法公平要求算法产生的分数对于受法律保护的群体(例如黑人和白人)的成员应该同样准确。 另一种说法是,算法公平要求算法为每个相关组产生相同百分比的误报或漏报。 不幸的是,通常无法在这两个维度上实现平等。 这一事实导致了一个紧迫的问题。 我们应该优先考虑哪种类型的衡量标准以及为什么?本文对如何最好地衡量算法公平的辩论做出了三项贡献:一种是概念的,一种是规范的,一种是法律的。 相同的预测准确度可确保得分对每个相关组的意义相同。 因此,它与一个人应该相信一个得分个体有关。 由于公平问题通常与行动而非信念相关,因此这种衡量标准不适合作为衡量公平的标准。 这是本文的概念贡献。 其次,本文认为假阳与假阴比率的均等是一个规范上重要的衡量标准。 虽然在这个维度上缺乏平等并不构成不公平,但这一衡量标准提供了怀疑不公平存在的重要理由。 这是本条的规范贡献。 有趣的是,提高算法的整体准确将减少这种不公平。 不幸的是,反歧视法禁止在所有情况下使用种族和其他受保护分类的普遍假设正在阻止设计算法的人使它们尽可能公平和准确。 这篇文章的第三个贡献是表明法律构成的障碍比许多人想象的要小。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值