【KDD2022教程】图算法公平性:方法与趋势

56e708407e45f98d22d46f4dd5c6be32.png

来源:专知
本文为教程介绍,建议阅读5分钟算法公平性是一个有吸引力但又具有挑战性的研究课题。

e24ec639942a3d06b647da7a3001d892.jpeg

图是一种普遍存在的数据类型,出现在许多现实世界的应用中,包括社会网络分析、建议和财务安全。尽管这很重要,但几十年的研究已经发展出了丰富的计算模型来挖掘图表。尽管它很繁荣,但最近对潜在的算法歧视的担忧有所增长。图上的算法公平性是一个有吸引力但又具有挑战性的研究课题,它旨在减轻图挖掘过程中引入或放大的偏差。第一个挑战对应于理论挑战,图数据的非IID性质不仅可能使许多现有公平机器学习研究背后的基本假设失效,而且还可能基于节点之间的相互关联而不是现有公平机器学习中的公平定义引入新的公平定义。第二个挑战是关于算法方面的,目的是理解如何在模型准确性和公平性之间取得平衡。本教程旨在(1) 全面回顾最先进的技术,以加强图的算法公平,(2) 启发开放的挑战和未来的方向。我们相信本教程可以使数据挖掘、人工智能和社会科学领域的研究人员和从业者受益。

http://jiank2.web.illinois.edu/tutorial/kdd22/algofair_on_graphs.html

  • Introduction

    • Background and motivations

    • Problem definitions and settings

    • Key challenges

  • Part I: Group Fairness on Graphs

    • Fair graph ranking

    • Fair graph clustering

    • Fair graph embedding

  • Part II: Individual Fairness on Graphs

    • Optimization-based method

    • Ranking-based method

  • Part III: Other Fairness on Graphs

    • Counterfactual fairness

    • Degree-related fairness

  • Part IV: Beyond Fairness on Graphs

    • Related problems

    • Explainability

    • Accountability

    • Robustness

  • Part V: Future Trends

    • Fairness on dynamic graphs

    • Benchmark and evaluation metrics

    • Fairness vs. other social aspects

c5fa157d3ccc8c759b0df24ff54c6594.jpeg

632354e82314ded0e57e027c818b1a57.jpeg

496d038b8a02b9a07997cc78c690cfcc.jpeg

fada05a6d394f80cc9ac468db814f9a7.jpeg

47cc4647b20622c3cf7665fa423d5463.jpeg

cfbc56742688c3024ed33c2d8e4ebc72.jpeg

9517f766cee637e3d27913c783c85d7e.jpeg

003d60bdf175c34c003e5d88add5dfa2.jpeg

e5935d2d2fbc75c4d334277deef13608.jpeg

691f7b22d596702538a61b1dfd679639.jpeg

c3fd911f31826f9e1d2263071404abc9.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值