干货 | AI算法透明性实现与评估

本文探讨了AI算法透明性的重要性及其面临的挑战,包括技术、评估和制度三个方面。提出了一种以法律规制和技术适配为基础的治理范式,并详细介绍了在学术、法律和技术领域的实施措施。此外,构建了面向算法使用者和监管方的透明度评估清单及等级表,以促进算法透明度的合规要求。最后,通过推荐系统实例展示了透明性在实践中的应用,采用知识图谱与强化学习提供解释,从而提高用户信任度和监管效能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

a70879c7ef87b8b6adc762241d7a2f59.png

以下内容整理自清华大学《数智安全与标准化》课程大作业期末报告同学的汇报内容。

e4a420fc8eedd58b9208aa4376083b51.png

我们主要从分析问题、解决问题、效果评估实际验证四方面,推动这一课题的研究,并形成相应的研究成果。

第一部分:AI算法透明概述

第一部分,AI算法透明概述,主要凝练了当前AI算法透明性存在的挑战。

42f7b42fe7129f5dc2eb3c3f8b2e00b6.png 

9583faddf61a9dc2a16b0b7060136f69.png

近年来,人工智能技术的发展使得其透明性问题日益凸显,为保障用户对算法知情,实现监管机构对算法进行有效规范治理与问责,算法透明性必不可少。

54836e0531f06b9868cf0999fa25f208.png 

10e930836a6db6f8d890f2604215fdbc.png

然而,算法透明性更类似于原则性的提议,具体如何落实透明性要求,并对其进行有效评估,尚未形成共识。

7ab9c3ebe096f9ac1df09ad01e3b1ed9.png 

6161a518da8f4dd28d5c8aea7f3c8c5b.png

因此,我们对AI算法透明当前存在的诸多挑战进行了总结,主要涉及三个维度:技术、评估制度

技术上,很难处理AI算法的黑箱问题;

评估上,对透明程度的要求很难把握尺度;

制度上,算法问责机制仍然模糊。

545b88ca113ca785005b385a32f37ace.png 

26bfe2aee71ec35ab282f73138ae3438.png

为有效应对这些挑战,我们首先给出<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值