Wayne 2024 | 通过基于图模型和自蒸馏深度学习增强医疗保健信息学

d8cb609e711a49208abe56ee838a87c8.png

本文约1800字,建议阅读9分钟
本文介绍了基于图模型和自蒸馏深度学习增强医疗保健信息学。‍‍‍

17c10036d86580aa275edccb448b1ba6.jpeg

深度学习彻底改变了计算机视觉、自然语言处理、机器人技术、医学图像处理等许多领域。在本论文中,我们专注于通过使用深度神经网络对医疗保健数据进行建模来增强医疗保健信息学,以完成不同的下游任务,例如分类、回归和图像分割。

在本论文的第 2 章中,我们介绍了相关的深度学习文献,并在此基础上提出了用于增强医疗保健信息学的深度学习算法。

在第 3 章中,我们提出了一种新颖的“扩张 CNN+RN”,它将扩张 CNN 与关系网络 (RN) 相结合,使用局灶性癫痫 (FE) 儿童的全脑连接组数据深入推理非局部轴突连接的依赖关系。

在第 4 章中,我们提出了一种新颖的时空同步图Transformer 网络 (STSGT),以捕捉 COVID-19 时间序列数据的复杂空间和时间依赖性并预测不断发展的流行病的未来状态。

在第 5 章中,我们提出了一种用于体积医学图像分割的 U 形网络中的新型双自蒸馏 (DSD) 框架,这是一种广义训练策略,它广泛利用 U-Nets 的编码器和解码器层的蒸馏来进一步提高其分割性能。

在第 6 章中,我们解决了 MRI 序列数据缺失的癫痫儿童癫痫发作区 (SOZ) 定位问题,提出了一种新颖的序列不可知 (SA) 模型,该模型在类级别和特征图级别对 MRI 序列输出进行跨序列蒸馏,以改进每个单独 MRI 序列的表示学习。

最后,在第 7 章中,我们总结了论文,重点介绍了我们通过深度学习增强医疗信息学的原创贡献,并讨论了该方向的一些有希望的未来工作。

f4d25100cfe284f50591b7a02d796586.png

论文题目:Enhancing Healthcare Informatics Through Deep Learning With Graph-Based Models and Self-Distillation

作者:Banerjee Soumyanil

类型:2024年博士论文

学校:Wayne State University(美国韦恩州立大学大学)

下载链接:

https://pan.baidu.com/s/1L5jRFdkSVnvJ0_DoDCNJTQ?pwd=epf4

硕博论文汇总:

https://pan.baidu.com/s/1Gv3R58pgUfHPu4PYFhCSJw?pwd=svp5

d2b3b731bff351cfef1590a9ca13dc6d.png

建议的扩张 CNN+RN 的架构图,它采用给定的输入 Sm 来预测输出分数 tm。在这个架构中,每个“卷积”表示:CNN + Max-Pooling,每个“扩张卷积”表示:CNN(扩张因子为 2)+,Max-Pooling。同一网络用于术前 CELF 语言评分和 ILAE 术后癫痫发作结果预测以及语言障碍预测。

011de8c736e1dad2875d3c1cc15d9be6.png

基于 pDWIC 的语言网络,(左)表达性语言网络,Ωexpressive。(右)接受性语言网络,Ωreceptive,这些网络来自 31 名幼儿(年龄:4.25±2.38 岁,20 名男性)。蓝色球体表示 Am,n 的 17 个节点,在校正 p 值 < 0.05 时,与 CELF 分数的 Pearson 相关系数具有统计学意义。黑色球体表示 Am,n 的其他 99 个节点没有显著相关性。每个 2-D 矩阵显示每个语言网络中的成对连接边,Am,n = 1 – 17。

fd003f4b0aee0434293a2f184a98a004.png

激活图显示扩张的 CNN+RN 学习到的 AAL 大脑区域最能预测 CELF 分数 和 ILAE 手术结果。每个 2D 圆形连接组都呈现一个 Circos 表意符号,显示 AAL 节点及其贡献(即权重),以提高预测准确性,并通过单个条带的厚度进行量化。较厚的条带表示节点更能预测真实观察结果。为了清晰起见,省略了相对较小的注意力权重(即 Z 分数小于每个图的 3 倍标准差)。

2573126b39bb944017913c74c6421afc.png

使用滑动窗口方法从训练数据中生成样本。

9abf0383f14e7291ee9710b469b866cb.png

从历史 M 个时间步骤生成的时空同步图 G˜。

ab4d2f7331f4a9b3882b60f7213719da.png

时空同步图G˜的邻接矩阵A˜。

dacc568bf33f742d386b238c8cd0282b.png

我们提出的时空同步图Transformer 网络 (STSGT) 的架构

103ab9ae7f73197c2b0bfd2670444802.png时空同步图Transformer 层的架构。GCN 使用时空同步图 A˜updated 的邻接矩阵。

419225e21ca7b0cb3364a1a11e6a8653.png(左)STST 的架构和(右)每个 STST 内的时空同步自注意力的一个头部的架构。

c1d9ad4463d83c52b9c7f6e066ed17e7.png

使用 U 形网络演示自我蒸馏,用于体积医学图像分割。Y 和 G 分别表示网络输出的 softmax 和独热编码的地面实况 (GT) 标签。Ei|Z i=1 和 Di|Z i=1 分别表示编码器和解码器端瓶颈模块的输出。T 和 S 分别表示教师和学生概率分布。显示的所有虚线仅在训练期间使用,并在推理期间被删除。

604d447c2fcf2f7bb3895d3952e95d1f.png

对轴向切片和 3D 体积进行定性比较,并与地面实况 (GT) 标签(在 CTA 上)和使用 (A) UNETR 和 (B) nnU-Net 的预测进行比较,突出显示了使用我们提出的 DSD 框架改进的分割(以平均 Dice 分数显示)。

a11d9b3f4fc7f85e349737d36cf77065.png

对轴向切片与地面实况 (GT) 标签 (在 FLAIR MRI 上) 以及来自 (A) UNETR、(B) nnU-Net 和 (C) Swin UNETR 的预测进行定性比较,突出显示了使用我们提出的 DSD 框架在分割方面的改进 (以平均 Dice 分数显示)。

abde3661c252afb030bca72c71c480f3.png

提出的 SA 架构用于从不完整的 MRI 序列中对癫痫发作起始区 (SOZ) 进行分类。(A) 在特征图级别和类别级别显示的蒸馏过程。推理过程中删除了虚线箭头。(B) SSFE、SHFE 和 SCH 的精细尺度和粗尺度的架构。

1ea3d83fcc1ea8dc9de88239729ecbeb.png

对左 (L) 和右 (R) 颞叶进行可视化,并显示所有序列、T1w-T2w-FLAIR-DWI 和 T1w-T2w-FLAIR 组合的 SOZ 平均平衡准确度 (B.A),包括经过和未经提炼的序列。

25e90f4564ab2cae9beedbf02d4a9095.png

29d7dc36770e742ed6013504a5c6aeec.png

393299c2caf203a9c9eee1a89b9447aa.png

b8befa8e81d2e4c137c0e0db49705a25.png

4d36b8490f2c7e5f61ec839616c1c666.png

编辑:王菁

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

5f1a224c04d8e6bc59fd41e42ccce807.png

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值