作者:王雨润
本文约5000字,建议阅读10分钟AGI的目标一直是人工智能研究的终极愿景。
一、什么是AGI
AGI(Artificial General Intelligence,通用人工智能)指的是一种能够像人类一样,在多种任务中表现出广泛而灵活的智能能力的人工智能系统。与当前的狭义人工智能不同,AGI不仅仅是针对某一特定任务进行优化,而是具备在多种环境和问题中适应和解决问题的能力。AGI应当能够自主学习、推理、规划和决策,并具有类似人类的常识和长期记忆能力,从而能够解决那些需要跨领域知识和复杂推理的任务。
窄人工智能(Narrow AI):指的是能够在特定任务上表现优异的人工智能系统,例如图像识别、语音识别等。当前大多数AI系统都属于这一范畴。
广义人工智能(Broad AI):这一阶段的AI系统能够在多个领域中表现出较强的智能能力,但仍需依靠人类提供明确的目标和训练数据。
通用人工智能(AGI):即真正具备与人类相当的认知能力,能够在任何任务中独立学习和适应。
AGI的概念最早由人工智能先驱艾伦·图灵(Alan Turing)和约翰·麦卡锡(John McCarthy)等人提出,他们设想了一种能够像人类一样,具备广泛认知和适应能力的人工智能系统。在1950年,图灵在其著名的论文《计算机器与智能》中提出了著名的“图灵测试”,以评估机器是否能够表现出人类智能水平。这一想法为AGI的研究奠定了基础。
Google DeepMind研究团队根据AI模型性能和学习处理任务的广泛性对AGI水平进行划分,从Level-0无人工智能到level-5超越人类共划分为6个等级。
狭义人工智能 (明确界定的任务或任务集) |
通用人工智能 (广泛的非物理任务范围,包括学习新技能等元认知任务) |
|
Level 0:无人工智能(No AI) |
狭义无人工智能(Narrow Non-AI) 计算器软件;编译器 |
通用无人工智能(General Non-AI) 人工介入计算,例如,Amazon Mechanical Turk |
Level 1:新兴(Emerging) (等于或略优于无技能人类) |
新兴狭义人工智能(Narrow Emerging Narrow AI) |