原创 | 展望大语言模型在AGI时代的发展前景

f3a36e58be83a233e57cc5768dccc313.png

作者:王雨润
本文约5000字,建议阅读10分钟AGI的目标一直是人工智能研究的终极愿景。

一、什么是AGI

AGI(Artificial General Intelligence,通用人工智能)指的是一种能够像人类一样,在多种任务中表现出广泛而灵活的智能能力的人工智能系统。与当前的狭义人工智能不同,AGI不仅仅是针对某一特定任务进行优化,而是具备在多种环境和问题中适应和解决问题的能力。AGI应当能够自主学习、推理、规划和决策,并具有类似人类的常识和长期记忆能力,从而能够解决那些需要跨领域知识和复杂推理的任务。

  • 窄人工智能(Narrow AI):指的是能够在特定任务上表现优异的人工智能系统,例如图像识别、语音识别等。当前大多数AI系统都属于这一范畴。

  • 广义人工智能(Broad AI):这一阶段的AI系统能够在多个领域中表现出较强的智能能力,但仍需依靠人类提供明确的目标和训练数据。

  • 通用人工智能(AGI):即真正具备与人类相当的认知能力,能够在任何任务中独立学习和适应。

AGI的概念最早由人工智能先驱艾伦·图灵(Alan Turing)和约翰·麦卡锡(John McCarthy)等人提出,他们设想了一种能够像人类一样,具备广泛认知和适应能力的人工智能系统。在1950年,图灵在其著名的论文《计算机器与智能》中提出了著名的“图灵测试”,以评估机器是否能够表现出人类智能水平。这一想法为AGI的研究奠定了基础。

Google DeepMind研究团队根据AI模型性能和学习处理任务的广泛性对AGI水平进行划分,从Level-0无人工智能到level-5超越人类共划分为6个等级。


狭义人工智能

(明确界定的任务或任务集)

通用人工智能

(广泛的非物理任务范围,包括学习新技能等元认知任务)

Level 0:无人工智能(No AI)

狭义无人工智能(Narrow Non-AI)

计算器软件;编译器

通用无人工智能(General Non-AI)

人工介入计算,例如,Amazon Mechanical Turk

Level 1:新兴(Emerging)

(等于或略优于无技能人类)

新兴狭义人工智能(Narrow Emerging Narrow AI)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值