【ICLR2025】VEVO:基于自监督解耦的可控零样本语音模仿

a2a1b59586f1ddf0dd4856089c7368e2.png

来源:专知
本文约1000字,建议阅读5分钟
我们提出了Vevo,一个多功能的零-shot语音模仿框架,具备可控的音色与风格。

图片

语音模仿,尤其是针对特定的语音属性,如音色和说话风格,对于语音生成至关重要。然而,现有的方法往往过度依赖标注数据,且难以有效地解耦音色与风格,这使得在零-shot场景下实现可控生成面临挑战。为解决这些问题,我们提出了Vevo,一个多功能的零-shot语音模仿框架,具备可控的音色与风格。Vevo的工作流程分为两个核心阶段:

  1. 内容-风格建模:给定文本或语音的内容tokens作为输入,我们使用自回归Transformer生成内容-风格tokens,这一过程受到风格参考的提示;

  2. 声学建模:给定内容-风格tokens作为输入,我们采用流匹配Transformer生成声学表示,这一过程受到音色参考的提示。

为了获得语音的内容和内容-风格tokens,我们设计了一种完全自监督的方法,逐步解耦语音的音色、风格和语言内容。具体来说,我们采用VQ-VAE [1]作为HuBERT [2]连续隐藏特征的分词器,将VQ-VAE字典的词汇量视为信息瓶颈,并精心调整该瓶颈,以获得解耦后的语音表示。Vevo在没有针对风格特定语料库的微调下,单纯使用60K小时有声书语音数据进行自监督训练,在口音和情感转换任务中,能够与现有方法匹敌或超越。此外,Vevo在零-shot语音转换和文本到语音任务中的有效性,进一步证明了其强大的泛化能力和多功能性。

图片

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

1d1c2857ea805e7e8b417d334b97d149.png

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值