【MIT博士论文】数据丰富的个性化因果推断

来源:专知
本文约1000字,建议阅读5分钟
本论文旨在利用现代观察数据的丰富性,发展用于个性化因果推断的方法。

图片

近年来,个体层面的因果问题日益受到关注,以实现个性化的决策制定。例如,如果我们给某位特定患者开一种药物,他们的健康状况会发生什么变化?又或者,如果我们向某位特定消费者推荐一款产品,他们的行为会有怎样的反应?由于成本高昂、个性化程度高或伦理问题,开展大规模随机实验以回答这类问题在现实中往往难以实施,甚至不可行。观察数据提供了一个有价值的替代方案,但由于缺乏显式的随机化,使得统计分析面临较大挑战。

本论文旨在利用现代观察数据的丰富性,发展用于个性化因果推断的方法。在第一部分中,我们提出了一种基于指数族建模的因果推断框架。具体来说,我们将因果问题的求解转化为从单一样本中学习指数族模型。为此,我们提出了一种计算上可行的替代方法,用以替代最大似然估计在学习指数族过程中的应用。

在第二部分中,我们借鉴了“双重稳健估计”(doubly robust estimation)的思想,使得在潜因子模型(latent factor model)下,结合黑盒矩阵补全方法进行因果推断成为可能。

图片

图片

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值