【CVPR2025】基于低秩专家混合机制的视觉语言模型终身知识编辑

来源:专知
本文约1000字,建议阅读5分钟
大量实验证明,LiveEdit在终身VLLM编辑任务中具有显著优势,进一步实验也验证了各模块设计的合理性与有效性。

图片

模型编辑旨在在无需重新训练的前提下,修正大型语言模型(LLMs)中的错误知识、更新过时信息并融入新数据。该任务在终身学习场景中尤为具有挑战性,因为编辑操作需要持续进行,以满足真实世界应用的需求。尽管部分编辑方法在纯语言模型中展现出较强的稳健性,但视觉语言模型(Vision LLMs, VLLMs)由于引入了视觉模态,无法直接适配现有的语言模型编辑器。

为弥合终身LLM编辑与VLLM之间的差距,本文提出LiveEdit,一种用于终身VLLM知识编辑的新方法。我们首先训练一个“编辑专家生成器”,能够为每次编辑实例独立生成低秩专家,旨在修正VLLM的相关输出响应。为此,我们设计了一种硬过滤机制,利用视觉语义知识在推理阶段粗略剔除与输入查询视觉无关的专家。随后,我们引入一种基于文本语义相关性的软路由机制,以融合多个视觉相关专家,从而实现多专家信息整合。

为评估方法有效性,我们构建了一个用于终身VLLM编辑的基准测试集。大量实验证明,LiveEdit在终身VLLM编辑任务中具有显著优势,进一步实验也验证了各模块设计的合理性与有效性。

https://arxiv.org/pdf/2411.15432

图片

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值