来源:Deephub Imba
本文共17000字,建议阅读20分钟本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
11、SAC (最大熵演员-评论家算法)
软演员-评论家(SAC)是一种先进的演员-评论家架构算法,专为连续动作空间任务设计,在DDPG和TD3的基础上引入了最大熵强化学习框架。
该算法的独特之处在于智能体不仅被激励最大化累积奖励,还同时被鼓励维持尽可能高的策略熵(最大化动作随机性)。
这种熵最大化机制促进了更全面的环境探索,提高了算法的鲁棒性,并与DDPG相比,通常能实现更快速、更稳定的学习过程。与DDPG类似,SAC也采用离策略学习框架,利用经验回放缓冲区。
在环境交互阶段,与其他演员-评论家方法相似,但SAC的演员(π_θ)采用随机策略 – 输出一个动作概率分布,系统从中采样具体动作。交互产生的经验(s, a, r, s', done)存储于回放缓冲区中。
在训练阶段(从缓冲区采样批次数据):
评论家网络更新: SAC采用特殊的Q值目标计算方法。系统使用目标网络获取对从当前策略(在下一状态s'评估)采样的下一动作(a')的最小Q值估计(Min Q')。
随后从该最小Q值中减去**熵项(α * log π(a'|s'))以获得"软目标值"。TD目标(y)由即时奖励和此软目标组合而成。主评论家网络(Q_ϕ,通常是双Q网络Q1, Q2)通过最小化与y之间的MSE损失**进行参数更新。
演员网络更新: 演员网络**为批次状态s采样动作(a_π)。损失函数设计鼓励产生高Q值(由主评论家评估)且同时具有高熵(高log π)的动作分布**。损失函数近似为:
(α * log π − min(Q1, Q2)).mean()
Alpha自动调节(可选): 熵温度参数(α)可通过自动调节机制优化,方法是设定目标熵水平并调整α以促使**策略实际熵接近目标值**。
目标网络更新: 目标评论家网络通过软更新机制逐步更新。SAC通常不使用目标演员网络,而是使用当前演员网络进行目标动作采样。
SAC的核心技术特点包括:
最大熵框架: 将策略熵H(π(⋅∣s))_H_(_π_(⋅∣ _s_))作为奖励的补充项,在标准奖励基础上添加熵奖励。
随机演员设计: 输出连续动作概率分布(如高斯分布)参数(均值、标准差),并从中采样具体动作。
双Q网络机制: 使用两个独立Q网络并取其目标值的最小值,以抑制Q值过估计问题(类似TD3)。
熵温度系数: 控制奖励目标与熵目标间的平衡权重。可设为固定值或通过自动调整机制优化。
LOG_STD_MAX = 2 LOG_STD_MIN = -20 EPSILON = 1e-6 # 用于log_prob计算中的数值稳定性 class ActorNetworkSAC(nn.Module): """ SAC的随机高斯演员。""" def __init__(self, state_dim: int, action_dim: int, max_action: float): super(ActorNetworkSAC, self).__init__() self.layer1 = nn.Linear(state_dim, 256) self.layer2 = nn.Linear(256, 256) self.mean_layer = nn.Linear(256, action_dim) # 输出均值 self.log_std_layer = nn.Linear(256, action_dim) # 输出对数标准差 self.max_action = max_action def forward(self, state: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ 输出压缩后的动作及其对数概率。""" x = F.relu(self.layer1(state)) x = F.relu(self.layer2(x)) mean = self.mean_layer(x) log_std = self.log_std_layer(x) log_std = torch.clamp(log_std, LOG_STD_MIN, LOG_STD_MAX) # 为稳定性而夹紧 std = torch.exp(log_std) # 创建分布并使用重参数化技巧采样 normal_dist = Normal(mean, std) z = normal_dist.rsample() # 可微分样本(压缩前) action_squashed = torch.tanh(z) # 应用tanh压缩 # 计算log_prob并修正tanh # log_prob = log_normal(z) - log(1 - tanh(z)^2 + eps) log_prob = normal_dist.log_prob(z) - torch.log(1 - action_squashed.pow(2) + EPSILON) # 在动作维度上对log_prob求和(如果action_dim > 1) log_prob = log_prob.sum(dim=-1, keepdim=True) # 将动作缩放至环境边界 action_scaled = action_squashed * self.max_action return action_scaled, log_prob
评论家网络采用类似于TD3的双Q网络架构,将状态和动作作为输入:
# SAC的评论家网络(双Q) class CriticNetworkSAC(nn.Module): def __init__(self, state_dim: int, action_dim: int): super(CriticNetworkSAC, self).__init__() # Q1架构 self.l1_q1 = nn.Linear(state_dim + action_dim, 256) self.l2_q1 = nn.Linear(256, 256) self.l3_q1 = nn.Linear(256, 1) # Q2架构 self.l1_q2 = nn.Linear(state_dim + action_dim, 256) self.l2_q2 = nn.Linear(256, 256) self.l3_q2 = nn.Linear(256, 1) def forward(self, state: torch.Tensor, action: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: sa = torch.cat([state, action], 1) q1 = F.relu(self.l1_q1(sa)) q1 = F.relu(self.l2_q1(q1)) q1 = self.l3_q1(q1) q2 = F.relu(self.l1_q2(sa)) q2 = F.relu(self.l2_q2(q2)) q2 = self.l3_q2(q2) return q1, q2
SAC的更新逻辑结合了演员、评论家和可选的alpha参数优化。这些核心计算反映了SAC算法的关键特性,包括目标Q值计算中的熵项、演员损失中的熵正则化,以及双Q网络和可选的alpha自动调整机制。
奖励曲线: SAC展示出优异的学习效率,累积奖励从初始约-1500迅速提升,并在大约40-50回合后稳定在约-200水平。收敛后的性能表现相对稳定,波动较小。
评论家学习: 平均评论家损失在初期显著上升,随后在一定波动范围内趋于稳定,类似于DDPG的模式,反映了随着演员策略改进,评论家需要不断适应更高价值的状态-动作评估。
演员学习: 演员损失曲线呈现先增后减的趋势,初期快速上升(表明策略成功更新朝向更高Q值方向),在约40回合达到峰值,之后逐渐下降,这可能反映了策略稳定性提高和熵正则化效应的平衡。
熵温度调节: 熵温度参数(Alpha)展示了动态调整过程,初期减小,在主要学习阶段(20-55回合)显著增加,随后再次降低,这与策略从初始探索逐渐转向利用阶段的预期行为一致。Alpha损失在零附近的波动确认了自动调整机制的有效运行,成功维持了目标熵水平。
SAC算法成功解决了钟摆控制任务,展现出较快的收敛速度和稳定的高奖励水平。熵温度参数(alpha)的自动调整机制在训练全过程中有效平衡了探索与利用的关系,促进了高效且稳健的学习过程。
12、TRPO (约束策略更新)
信任区域策略优化(TRPO)是一种创新的策略梯度算法,其核心目标是实现单调策略改进,通过约束机制确保(以高概率)每次策略更新不会导致性能下降。
该算法通过限制单次更新中策略变化幅度来实现学习稳定性,具体使用新旧策略间的KL散度作为变化度量标准。
TRPO属于在策略演员-评论家类算法(尽管评论家主要用于优势估计,不在核心TRPO约束更新机制内)。
算法的主要技术挑战在于如何高效求解其所涉及的约束优化问题。
与其他在策略方法类似,TRPO使用当前策略(πold)收集经验批次并计算优势值(A)。随后计算标准策略梯度向量('g')。
TRPO的核心创新在于其更新步骤的计算方法。它不是简单地沿策略梯度'g'方向更新,而是求解一个约束优化问题:在保持新旧策略间KL散度低于阈值(δ)的前提下,最大化策略性能改进。
这一优化问题通过寻找满足Fs≈g的步骤方向's'来近似求解,其中F是Fisher信息矩阵(用于近似KL约束的曲率)。
TRPO采用共轭梯度(CG)算法高效计算's',无需显式构建或求逆Fisher矩阵F。CG算法只需计算Fisher-向量积(FVP)。
确定更新方向后,通过回溯线搜索确定最大可行步长(α),使得更新满足实际KL约束和替代目标改进条件。
TRPO的关键技术要素包括:
信任区域约束: 将策略更新限制在性能改进近似有效的区域内,确保学习过程的稳定性。
KL散度约束: 使用平均Kullback-Leibler散度DKL(πold∣∣πnew)≤δ _DKL_ (_πold_ ∣∣ _πnew_ )≤ _δ_作为策略变化的度量标准。
Fisher信息矩阵(FIM): 表征策略分布空间的局部曲率特性。TRPO通过涉及FIM的二次形式来近似KL约束。
Fisher-向量积(FVP): 一种利用自动微分高效计算FIM与任意向量乘积的技术,避免了构建和存储完整FIM的计算开销。
共轭梯度(CG)算法: 一种迭代求解线性系统Fs≈g的方法,用于高效计算更新方向。
线搜索机制: 确保最终采用的更新步长满足KL约束,并根据替代目标函数改进性能。
TRPO需要定义演员(策略网络)和评论家(价值网络),结构与A2C/PPO等算法类似。
实现的复杂部分主要在于FVP计算、CG算法和线搜索机制。以下是概念性实现概述(详细完整实现请参考12_trpo.ipynb或a3c_training.py):
# 使用Hessian-向量积近似计算Fisher向量积 # 这用于共轭梯度方法,计算TRPO更新步骤中的搜索方向 def fisher_vector_product(actor, states, vector, cg_damping): log_probs = actor.get_log_probs(states).detach() kl = (log_probs.exp() * (log_probs - log_probs.detach())).sum() grads = torch.autograd.grad(kl, actor.parameters(), create_graph=True) flat_grads = torch.cat([g.view(-1) for g in grads]) gv = torch.dot(flat_grads, vector) hv = torch.autograd.grad(gv, actor.parameters()) flat_hv = torch.cat([h.view(-1) for h in hv]) # 添加阻尼项以提高数值稳定性 return flat_hv + cg_damping * vector # 实现共轭梯度方法解Ax = b # 这用于近似TRPO更新步骤中的自然梯度方向 def conjugate_gradient(fvp_func, b, cg_iters=10, tol=1e-10): x = torch.zeros_like(b) # 初始化解向量 r = b.clone() # 残差 p = b.clone() # 搜索方向 rs_old = torch.dot(r, r) for _ in range(cg_iters): Ap = fvp_func(p) alpha = rs_old / torch.dot(p, Ap) x += alpha * p r -= alpha * Ap rs_new = torch.dot(r, r) if rs_new < tol: break p = r + (rs_new / rs_old) * p rs_old = rs_new return x # 执行回溯线搜索以找到可接受的步长 # 确保满足KL散度约束 # 且新策略改进了替代损失 def backtracking_line_search(actor, states, actions, advantages, old_log_probs, step_direction, initial_step_size, max_kl, decay=0.8, max_iters=10): theta_old = {name: param.clone() for name, param in actor.named_parameters()} # 存储旧参数 for i in range(max_iters): step_size = initial_step_size * (decay ** i) # 渐进减小步长 # 将步骤应用于演员参数 for param, step in zip(actor.parameters(), step_size * step_direction): param.data.add_(step) # 计算KL散度和替代损失 kl = actor.kl_divergence(states, old_log_probs) surrogate = actor.surrogate_loss(states, actions, advantages, old_log_probs) # 检查KL是否在约束内且替代损失是否有改善 if kl <= max_kl and surrogate >= 0: return step_size * step_direction, True # 如果步骤不成功,恢复旧参数 for name, param in actor.named_parameters(): param.data.copy_(theta_old[name]) return None, False # 如果找不到有效步骤,返回失败 # 使用TRPO算法更新演员(策略)和评论家(价值函数) def update_trpo(actor, critic, actor_optimizer, critic_optimizer, states, actions, advantages, returns_to_go, log_probs_old, max_kl=0.01, cg_iters=10, cg_damping=0.1, line_search_decay=0.8, value_loss_coeff=0.5, entropy_coeff=0.01): # 计算策略梯度 policy_loss = actor.surrogate_loss(states, actions, advantages, log_probs_old) grads = torch.autograd.grad(policy_loss, actor.parameters()) g = torch.cat([grad.view(-1) for grad in grads]) # 使用共轭梯度计算自然梯度方向 fvp_func = lambda v: fisher_vector_product(actor, states, v, cg_damping) step_direction = conjugate_gradient(fvp_func, g, cg_iters) # 基于KL约束计算步长 sAs = torch.dot(step_direction, fvp_func(step_direction)) step_size = torch.sqrt(2 * max_kl / (sAs + 1e-8)) # 执行回溯线搜索以确保满足KL约束 step, success = backtracking_line_search(actor, states, actions, advantages, log_probs_old, step_direction, step_size, max_kl, line_search_decay) # 如果成功,应用步骤 if success: with torch.no_grad(): for param, step_val in zip(actor.parameters(), step): param.data.add_(step_val) # 计算并更新价值函数,使用MSE损失 value_loss = nn.MSELoss()(critic(states), returns_to_go) critic_optimizer.zero_grad() value_loss.backward() critic_optimizer.step() return policy_loss.item(), value_loss.item() # 返回损失值,用于监控
TRPO通过利用Fisher信息矩阵(FIM)提供的二阶优化信息显式约束策略更新幅度,采用共轭梯度和Fisher-向量积技术高效实现计算,并通过线搜索确保每次更新的有效性。
学习效率与性能: TRPO展示出极高的样本效率;平均奖励在仅约20-30次迭代内迅速攀升至接近最优水平,并保持稳定。平均回合长度同样呈现快速下降趋势,迅速稳定在较低水平。
评论家学习稳定性: 评论家损失在初期波动后相对迅速地趋于稳定,表明价值函数学习过程高效且一致。
策略更新约束(KL散度): "实际KL散度"图显示每次迭代的策略变化量。TRPO设计目标是将这一变化量维持在较小范围内(低于红线所示Max KL阈值,通常约0.01)以确保更新稳定性。图中显示的值呈现异常(部分为负值,理论上KL散度不应为负),但算法的设计意图是实现稳定、约束的更新。
优化目标进展: "替代目标"图显示TRPO在采取更新步骤前计算的预期性能改进。曲线在零附近的波动表明逐步改进保证并非总是完美满足,但整体算法表现出色。
TRPO算法在网格任务上展示出卓越的样本效率,迅速收敛至高性能且稳定的策略。尽管内部优化指标(KL散度,替代目标)数据存在一定噪声或异常,但信任区域方法成功地引导学习过程快速达到有效解决方案。
13、DQN (深度Q学习)
Q-Learning算法在状态空间较小且结构清晰的环境中表现出色。然而,当面临非常大或连续的状态空间(例如处理游戏像素数据或机器人传感器输入)时,传统Q-Learning方法的有效性会显著降低。
深度Q网络(DQN)通过引入深度神经网络替代传统的Q表格,有效解决了这一问题。该网络参数化为Q(s,a;θ),能够对Q值进行高效近似。
DQN引入了两项关键技术创新,用于稳定神经网络环境下的Q学习过程:经验回放(Experience Replay)和目标网络(Target Network)。
DQN的工作流程如下:
智能体基于主Q网络(Q_θ)采用epsilon-greedy策略与环境进行交互。每一个经验转换元组(s, a, r, s', done)被系统地存储在回放缓冲区(Replay Buffer)中。
在训练阶段,智能体从缓冲区中随机采样一个小批量(mini-batch)的历史经验。对于批次中的每个经验样本,系统计算目标Q值(即TD目标y),这一计算基于观察到的即时奖励r以及从后续状态s'可获得的最大Q值。后者通过一个参数更新频率较低的目标网络(Q_θ⁻)进行估计。
主Q网络负责预测在状态s下执行动作a的Q值。系统计算目标值y与预测Q值之间的误差(使用均方误差MSE或Huber损失函数),并通过梯度下降优化算法更新主Q网络的参数(θ)。
系统定期将主网络的权重参数复制到目标网络中:θ⁻ ← θ。
DQN的核心技术要素包括:
一个神经网络结构(如多层感知机MLP或卷积神经网络CNN),用于近似Q(s, a)函数。该网络通常接收状态s作为输入,输出所有可能离散动作的Q值。
一个用于存储历史交互数据(s, a, r, s', done)的经验缓冲区。通过采样随机小批量数据,有效打破了时序相关性,提高了学习过程的稳定性和效率。
Q网络的独立副本,其参数(θ⁻)更新频率较低(例如,每C步更新一次或通过慢速"软"更新机制)。这为学习过程提供了稳定的目标值:
该方程为主Q网络训练提供了稳定的学习目标,有效防止了参数震荡。
首先,定义Q网络架构。对于简单的向量化状态表示(例如网格世界中的归一化坐标),多层感知机(MLP)结构通常已足够:
# DQN网络(MLP) class DQN(nn.Module): def __init__(self, n_observations: int, n_actions: int): super(DQN, self).__init__() self.layer1 = nn.Linear(n_observations, 128) self.layer2 = nn.Linear(128, 128) self.layer3 = nn.Linear(128, n_actions) # 输出每个动作的Q值 def forward(self, x: torch.Tensor) -> torch.Tensor: """ 前向传递获取Q值。""" # 确保输入是正确设备上的浮点张量 if not isinstance(x, torch.Tensor): x = torch.tensor(x, dtype=torch.float32, device=x.device) elif x.dtype != torch.float32: x = x.to(dtype=torch.float32) x = F.relu(self.layer1(x)) x = F.relu(self.layer2(x)) return self.layer3(x) # 原始Q值
该网络结构学习从环境状态到动作价值的映射关系。
接下来,实现经验回放机制以存储交互经验:
# 用于存储转换的结构 Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward', 'done')) # 经验回放缓冲区 class ReplayMemory: def __init__(self, capacity: int): self.memory = deque([], maxlen=capacity) def push(self, *args: Any) -> None: """ 保存一个转换元组(s, a, s', r, done)。""" # 确保张量存储在CPU上,避免GPU内存问题 processed_args = [] for arg in args: if isinstance(arg, torch.Tensor): processed_args.append(arg.cpu()) elif isinstance(arg, bool): # 将done标志作为张量存储以保持一致性 processed_args.append(torch.tensor([arg], dtype=torch.bool)) else: processed_args.append(arg) self.memory.append(Transition(*processed_args)) • • def sample(self, batch_size: int) -> Optional[List[Transition]]: • """ 采样一个随机转换批次。""" • if len(self.memory) < batch_size: • return None • return random.sample(self.memory, batch_size) • def __len__(self) -> int: return len(self.memory)
此缓冲区设计允许从历史经验中采样不相关的批次数据进行训练更新。动作选择基于主Q网络的输出,采用epsilon-greedy策略:
# 动作选择(使用DQN的Epsilon-Greedy) def select_action_dqn(state: torch.Tensor, policy_net: nn.Module, epsilon: float, n_actions: int, device: torch.device) -> torch.Tensor: """ 使用策略Q网络以epsilon-greedy方式选择动作。""" if random.random() < epsilon: # 探索:选择一个随机动作 action = torch.tensor([[random.randrange(n_actions)]], device=device, dtype=torch.long) else: # 利用:根据Q网络选择最佳动作 with torch.no_grad(): # 如果需要,添加批次维度,确保张量在正确设备上 state = state.unsqueeze(0) if state.dim() == 1 else state state = state.to(device) # 获取Q值并选择具有最大Q的动作 action = policy_net(state).max(1)[1].view(1, 1) return action
优化过程使用目标网络计算TD目标,并更新主策略网络参数:
# DQN优化步骤概述 def optimize_model_dqn(memory: ReplayMemory, policy_net: DQN, target_net: DQN, optimizer: optim.Optimizer, batch_size: int, gamma: float, device: torch.device): """ 对DQN策略网络执行一步优化。""" # 1. 从内存中采样批次 # 2. 准备批次张量(states, actions, rewards, next_states, dones)在'device'上 # 3. 使用policy_net计算所采取动作的Q(s_t, a_t) state_action_values = policy_net(state_batch).gather(1, action_batch) # 4. 使用target_net计算V(s_{t+1}) = max_{a'} Q(s_{t+1}, a'; θ⁻) with torch.no_grad(): next_state_values = target_net(non_final_next_states).max(1)[0] # 5. 计算TD目标y = reward + gamma * V(s_{t+1}) (处理终止状态) expected_state_action_values = (next_state_values * gamma) + reward_batch # 6. 计算Q(s_t, a_t)和TD目标y之间的损失(例如,Huber损失) loss = F.smooth_l1_loss(state_action_values, expected_state_action_values.unsqueeze(1)) # 7. 优化policy_net optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_value_(policy_net.parameters(), 100) # 可选梯度裁剪 optimizer.step() # 完整实现见13_dqn.ipynb
这一核心训练循环,结合目标网络的定期更新机制,使DQN能够在使用复杂函数近似器(如神经网络)的情况下实现有效学习。
DQN实验结果分析:
学习进展: DQN展示了明显的学习效果。平均奖励值从初始的负值显著增长,在大约200-250回合后趋于稳定,达到持续性的正向奖励水平。
训练效率: 回合长度随训练进程显著减少,与奖励增长趋势相一致,表明智能体逐步掌握了更高效地到达目标的能力。
探索机制: epsilon衰减曲线显示了探索行为的逐步减少过程,使智能体能够在后期训练阶段更有效地利用已习得的知识。
策略学习效果: 最终学习得到的策略网格展示了一个结构合理的决策方案,动作选择通常引导智能体朝向目标状态'G'(位于网格右下角)。
DQN在自定义网格环境中成功学习了高效的导航策略,能够找到通向目标的最优路径。随着探索概率的逐步降低,性能指标(包括累积奖励和回合长度)显著改善并趋于稳定。
14、MADDPG (多智能体深度确定性策略梯度)
在多智能体学习环境中,当多个智能体同时进行学习时,会出现一个独特的技术挑战:环境非平稳性(Non-stationarity)。
从任何单个智能体的视角来看,随着其他智能体不断更新各自的策略,环境本身也在持续变化。多智能体深度确定性策略梯度(MADDPG)算法通过集中式训练、分散式执行(Centralized Training with Decentralized Execution)架构扩展了DDPG算法,有效解决了这一问题。
每个智能体基于其局部观察学习独立的Actor网络,但训练过程中每个智能体都拥有一个集中式Critic网络,该网络接收来自所有智能体的信息(包括观察和动作)。
这种训练阶段的信息共享机制有助于稳定整个学习过程。
MADDPG工作流程:
每个智能体(1, 2, ...N)仅使用自身局部观察(o1, o2)和对应的Actor网络(μ_θ1, μ_θ2)在环境中生成动作(a1, a2),并添加噪声以促进探索。系统将联合经验(包含所有观察、动作、奖励、后续观察)存储在共享回放缓冲区中。
Critic更新(智能体i): 智能体i的Critic网络(Q_ϕi)基于目标值进行参数更新。该目标值计算依赖于:智能体i的即时奖励(r_i);目标集中式Critic(Q_ϕi′)的输出,该Critic接收以下输入:联合后续观察状态以及所有目标Actor网络(μ_θj′(o_j′))预测的后续动作
智能体i的Actor网络(μ_θi)参数更新目标是生成能够最大化其主集中式Critic(Q_ϕi)估计的Q值的动作,同时考虑所有Actor网络当前预测的动作分布。
所有目标网络通过从对应主网络进行缓慢的软更新来更新参数。
MADDPG的核心技术概念包括:
分散式Actor架构: 每个智能体i拥有独立的策略网络μ_i(o_i),该网络仅使用智能体局部观察o_i来选择动作a_i。
集中式Critic架构: 每个智能体i配备对应的Critic网络Q_i(x, a_1, ..., a_N),该网络以联合状态/观察x和所有智能体的动作(a_1, ..., a_N)作为输入,用于估计智能体i的价值函数。
离策略学习: 算法使用存储联合交互数据的回放缓冲区,支持从历史经验中进行高效学习。
每个智能体的Actor网络设计通常类似于DDPG中的actor结构,输出确定性动作(如需处理离散动作空间,则可调整为输出动作概率分布):
# Actor网络(类似于DDPG的,每个智能体一个) class ActorNetworkMADDPG(nn.Module): def __init__(self, obs_dim: int, action_dim: int, max_action: float): super(ActorNetworkMADDPG, self).__init__() self.layer1 = nn.Linear(obs_dim, 128) self.layer2 = nn.Linear(128, 128) self.layer3 = nn.Linear(128, action_dim) self.max_action = max_action def forward(self, obs: torch.Tensor) -> torch.Tensor: x = F.relu(self.layer1(obs)) x = F.relu(self.layer2(x)) action = self.max_action * torch.tanh(self.layer3(x)) # 缩放的连续动作 return action
MADDPG与DDPG的关键区别在于集中式Critic设计,该Critic将全局信息作为输入:
# 集中式Critic网络(每个智能体一个) class CentralizedCriticMADDPG(nn.Module): def __init__(self, joint_obs_dim: int, joint_action_dim: int): super(CentralizedCriticMADDPG, self).__init__() # 输入大小 = 所有观察的组合维度 + 所有动作 self.layer1 = nn.Linear(joint_obs_dim + joint_action_dim, 256) self.layer2 = nn.Linear(256, 256) self.layer3 = nn.Linear(256, 1) # 输出该智能体的单一Q值 def forward(self, joint_obs: torch.Tensor, joint_actions: torch.Tensor) -> torch.Tensor: # 连接所有观察和所有动作 x = torch.cat([joint_obs, joint_actions], dim=1) x = F.relu(self.layer1(x)) x = F.relu(self.layer2(x)) q_value = self.layer3(x) return q_value
该Critic网络设计用于学习特定智能体的期望回报,同时考虑环境中所有智能体的观察和行为。
回放缓冲区需要存储完整的联合经验数据(o_list, a_list, r_list, o_next_list, done_list):
# --- MADDPG更新逻辑概述(对于智能体i) --- # 假设已处理优化器、目标网络、批次采样 # 1. 从缓冲区中采样联合转换批次: batch_obs, batch_actions, batch_rewards, batch_next_obs, batch_dones # --- Critic_i更新 --- with torch.no_grad(): target_next_actions = [target_actor_j(batch_next_obs_j) for j in range(num_agents)] target_next_actions_cat = torch.cat(target_next_actions, dim=1) joint_next_obs_cat = batch_next_obs.view(batch_size, -1) q_target_next = target_critic_i(joint_next_obs_cat, target_next_actions_cat) td_target_i = batch_rewards_i + gamma * (1 - batch_dones_i) * q_target_next joint_obs_cat = batch_obs.view(batch_size, -1) joint_actions_cat = batch_actions.view(batch_size, -1) q_current_i = critic_i(joint_obs_cat, joint_actions_cat) critic_loss_i = F.mse_loss(q_current_i, td_target_i.detach()) # 优化critic_i # --- Actor_i更新 --- # 冻结critic梯度 current_actions = [actor_j(batch_obs_j) for j in range(num_agents)] current_actions[i] = actor_i(batch_obs_i) current_actions_cat = torch.cat(current_actions, dim=1) actor_loss_i = -critic_i(joint_obs_cat, current_actions_cat).mean() # 优化actor_i # 解冻critic梯度 # --- 软更新目标网络 --- soft_update(target_critic_i, critic_i, tau) soft_update(target_actor_i, actor_i, tau)
更新算法涉及上述组件的协同工作。通过在训练阶段使用集中式Critic架构,MADDPG为每个Actor提供了一个能够考虑其他智能体行为的稳定学习信号,有效缓解了非平稳性问题,同时保持了分散式执行的灵活性。
MADDPG实验结果分析:
奖励表现(共享): 每回合总共享奖励呈现显著波动,其移动平均线仅显示微弱的上升趋势,最终在一个相对较低的水平(约-50)趋于平稳。这表明智能体在学习过程中取得一定进展,但在200回合的训练周期内未能收敛至高效的合作策略。
Critic网络表现: 平均Critic损失值快速下降并稳定在较低水平,表明Critic网络在预测当前智能体策略组合下的价值函数方面逐渐变得准确。
Actor网络表现: 平均Actor损失(策略梯度)持续减小(朝负方向增大),表明Actor网络从对应Critic接收到一致的优化信号,策略更新方向符合预期。
MADDPG算法展示出明确的学习迹象,Critic和Actor损失均呈现一致的优化趋势。
然而,实际共享奖励的改善幅度有限且波动较大,未能展示强烈的收敛特征。
这种表现差异可能反映了多智能体协调学习的固有挑战、环境非平稳性的影响,或者表明需要更长的训练周期才能形成有效的协作策略。
15、QMIX (协作型价值分解方法)
QMIX(Q值混合)算法专为具有共享团队奖励的协作型多智能体强化学习任务设计。与MADDPG类似,它采用集中训练、分散执行的架构范式。
然而,QMIX的核心差异在于:它不是为每个智能体学习独立的集中式Critic,而是学习基于局部观察的个体智能体Q函数(Q_i),并通过一个特殊设计的混合网络(Mixing Network)将它们组合,以估计联合行动价值函数(Q_tot)。
算法的关键技术洞见是:对于许多协作任务,如果一个智能体的行为增加了其局部效用(Q_i),那么这一行为也应该增加(或至少不减少)整个团队的整体效用(Q_tot)。QMIX通过在混合网络内部结构中强制执行单调性约束(Monotonicity Constraint)来实现这一特性。
这一设计确保了基于个体Q_i值的分散贪婪动作选择与基于Q_tot选择的贪婪联合动作保持一致。
混合网络本身通过超网络(Hypernetworks)技术接收全局状态信息,使个体效用组合方式能够根据整体环境上下文动态调整。
QMIX工作流程:
在执行阶段,每个智能体i基于其局部观察o_i和对应的网络Q_i(θ_i)选择动作a_i(通常采用epsilon-greedy策略)。系统存储包含全局状态x在内的完整联合交互经验。
目标Q_tot'计算过程:
对于每个智能体i,目标网络Q_i'(θ_i')用于确定从后续观察o_i'出发的最优动作对应的Q值。
这些个体最大Q值被输入到目标混合网络``f_mix'(ϕ_mix')中,该网络同时接收后续全局状态x'作为输入,综合生成目标联合价值Q_tot'。
系统计算标准TD目标y:y = r + γQ_tot'。
当前Q_tot计算与损失计算:
对于每个智能体i,主网络Q_i(θ_i)计算在当前批次数据中实际执行的动作a_i对应的Q值。
这些Q值与当前全局状态x一起输入到主混合网络``f_mix(ϕ_mix)中,生成当前联合价值估计Q_tot。
系统计算y与Q_tot之间的均方误差损失。
参数优化过程:
一个统一的优化器根据计算得到的损失函数值同时更新所有智能体网络(θ_i)和混合网络(ϕ_mix)的参数。各目标网络通过软更新机制定期更新参数。
首先,定义个体智能体网络结构。这是一个标准的Q网络设计,接收局部观察数据并输出每个可能动作的Q值:
# 智能体网络(类似于DQN的Q网络) class AgentQNetwork(nn.Module): def __init__(self, obs_dim: int, action_dim: int): super(AgentQNetwork, self).__init__() # 可以是MLP或RNN(DRQN),取决于可观察性需求 self.fc1 = nn.Linear(obs_dim, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, action_dim) # 每个动作的Q值 def forward(self, obs: torch.Tensor) -> torch.Tensor: x = F.relu(self.fc1(obs)) x = F.relu(self.fc2(x)) q_values = self.fc3(x) return q_values
混合网络设计是QMIX的创新核心,它利用超网络技术实现单调性约束:
# 简化的QMIX混合网络 class QMixer(nn.Module): def __init__(self, num_agents: int, global_state_dim: int, mixing_embed_dim: int = 32): super(QMixer, self).__init__() self.num_agents = num_agents self.state_dim = global_state_dim self.embed_dim = mixing_embed_dim # W1的超网络(生成正权重) self.hyper_w1 = nn.Sequential( nn.Linear(self.state_dim, 64), nn.ReLU(), nn.Linear(64, self.num_agents * self.embed_dim) ) # b1的超网络 self.hyper_b1 = nn.Linear(self.state_dim, self.embed_dim) # W2的超网络(生成正权重) self.hyper_w2 = nn.Sequential( nn.Linear(self.state_dim, 64), nn.ReLU(), nn.Linear(64, self.embed_dim) # 输出大小embed_dim -> 重塑为(embed_dim, 1) ) # b2的超网络(标量偏置) self.hyper_b2 = nn.Sequential( nn.Linear(self.state_dim, 32), nn.ReLU(), nn.Linear(32, 1) ) def forward(self, agent_qs: torch.Tensor, global_state: torch.Tensor) -> torch.Tensor: # agent_qs形状:(batch_size, num_agents) # global_state形状:(batch_size, global_state_dim) batch_size = agent_qs.size(0) agent_qs_reshaped = agent_qs.view(batch_size, 1, self.num_agents) # 从全局状态生成权重/偏置 w1 = torch.abs(self.hyper_w1(global_state)).view(batch_size, self.num_agents, self.embed_dim) b1 = self.hyper_b1(global_state).view(batch_size, 1, self.embed_dim) w2 = torch.abs(self.hyper_w2(global_state)).view(batch_size, self.embed_dim, 1) b2 = self.hyper_b2(global_state).view(batch_size, 1, 1) # 混合层(确保第一层后有非线性如ELU/ReLU) hidden = F.elu(torch.bmm(agent_qs_reshaped, w1) + b1) # (batch, 1, embed_dim) q_tot = torch.bmm(hidden, w2) + b2 # (batch, 1, 1) return q_tot.view(batch_size, 1) # 返回形状(batch, 1)
更新逻辑包括获取相关动作的Q_i值,将它们传入混合器,使用目标网络计算TD目标值,并通过混合网络和所有智能体网络反向传播损失梯度。
QMIX提供了一种结构化方法来学习协作策略,通过分解团队价值函数,同时确保个体行为贡献通过单调性约束与全局目标保持一致性。
QMIX实验结果分析:
奖励表现(共享): 智能体展示了显著的学习进步。共享奖励曲线呈现明显的上升趋势,特别是在移动平均线中表现突出,从初始的显著负值增长至最终约-10至-20的水平。尽管性能有了实质性改善,但奖励仍然存在波动且未能稳定达到正值区间。
TD损失: 平均TD损失(注意采用对数刻度)在前约150回合内急剧下降,幅度接近两个数量级,表明Q网络和混合器架构迅速学会了对联合动作价值进行有效近似。随后损失值在一个较低水平趋于稳定,表明系统成功学习到了相对于当前策略的准确值函数表示。
探索行为: Epsilon参数在整个训练过程中保持稳定但缓慢的衰减趋势。这种设计确保了持续的环境探索能力,可能导致奖励指标的持续性波动,但同时允许智能体有效逃离局部最优解。
QMIX算法成功促进了协作学习过程,导致共享奖励指标的显著改善。值函数学习(通过TD损失反映)表现出高效性并迅速达到稳定状态。尽管在训练后期奖励趋于平稳但仍有波动,总体趋势清晰展示了多智能体协作策略学习的成功进展。
16、HAC:层次化结构解决长时域任务
在长序列动作任务或奖励稀疏的环境中,传统扁平结构的强化学习智能体通常面临显著的性能挑战。
层次化强化学习(Hierarchical Reinforcement Learning, HRL)通过在多个抽象层次上构建策略体系来解决这一问题。该方法使高层策略能够为低层设定子目标,从而将复杂任务分解为更易处理的子任务序列。层次化演员-评论家(Hierarchical Actor-Critic, HAC)算法正是基于这一原理,结合了目标条件策略和后见之明经验回放技术。
HAC (层次化演员-评论家)采用多层次结构:
高层(第1层): 接收当前状态 s 和最终目标 G 作为输入,其策略 (π_1) 为低层生成子目标 g₀。
低层(第0层): 接收当前状态 s 和来自高层的子目标 g₀,其策略 (π_0) 选择原始动作 a,旨在在固定时间范围 H 内实现子目标。低层根据子目标完成情况获得内在奖励,用于更新其策略参数。
高层更新机制: 高层获取低层执行过程中累积的环境奖励总和,并基于状态转换(从设置子目标的初始状态到低层执行完毕的最终状态)来优化其策略。
两个层级均可利用评论家网络 (V_0, V_1) 来估计状态或状态-目标组合的价值或优势函数。后见之明经验回放技术(使用实际达到的状态重新标记转换样本)对于提高学习效率至关重要,尤其是对低层策略的训练。
在实现方面,目标条件网络是HAC算法的核心组件。对于离散网格世界环境,我们可以基于DQN的Q网络架构进行调整,输入维度需扩展为state_dim + goal_dim以同时接收状态和目标信息。
# 目标条件Q网络 (可用于HAC中的Actor/Critic代理) # 假设状态和目标作为输入连接在一起 class GoalConditionedQNetwork(nn.Module): def __init__(self, input_dim: int, action_dim: int): super(GoalConditionedQNetwork, self).__init__() self.fc1 = nn.Linear(input_dim, 128) self.fc2 = nn.Linear(128, 128) # 输出取决于层次: # L0: 原始动作的Q值 # L1: 选择离散子目标的Q值 self.fc3 = nn.Linear(128, action_dim) def forward(self, state_goal_concat: torch.Tensor) -> torch.Tensor: x = F.relu(self.fc1(state_goal_concat)) x = F.relu(self.fc2(x)) q_values = self.fc3(x) return q_values # --- 网络维度 --- # state_dim = env.state_dim # goal_dim = env.goal_dim # 如果目标是状态,通常与state_dim相同 # primitive_action_dim = env.action_dim # subgoal_action_dim = env.rows * env.cols # 如果子目标是离散网格单元 # low_level_net = GoalConditionedQNetwork(state_dim + goal_dim, primitive_action_dim) # high_level_net = GoalConditionedQNetwork(state_dim + goal_dim, subgoal_action_dim)
此网络架构同时处理当前状态和目标作为输入,输出特定层次对应的动作Q值(L0层输出原始动作的Q值,L1层输出子目标选择的Q值)。
后见之明回放缓冲区是另一个关键组件,用于存储转换样本并根据实际达到的状态进行目标重新标记:
# 简化的后见之明回放缓冲区概念 class HindsightReplayBuffer: def __init__(self, capacity: int, hindsight_prob: float = 0.8): self.memory = deque([], maxlen=capacity) self.hindsight_prob = hindsight_prob def push(self, state, action, reward, next_state, goal, done, level, achieved_goal): # 存储完整的转换,包括预期目标和实际达到的目标 self.memory.append({ 'state': state, 'action': action, 'reward': reward, 'next_state': next_state, 'goal': goal, 'done': done, 'level': level, 'achieved_goal': achieved_goal }) def sample(self, batch_size: int, level: int): # 1. 筛选缓冲区中正确'level'的转换 # 2. 从这些转换中采样一批 # 3. 对于批次中的每个转换: # - 保留原始转换(state, action, reward, next_state, goal, done) # - 以'hindsight_prob'的概率: # - 创建一个*新的*后见之明转换: # - 使用相同的state, action, next_state。 # - 用'achieved_goal'替换'goal'。 # - 根据next_state是否匹配*新的*后见之明目标重新计算'reward' # (例如,如果匹配则为0,如果不匹配则为-1,用于L0内在奖励)。 # - 根据是否达到后见之明目标重新计算'done'。 # - 将此后见之明转换添加到正在准备的批次中。 # 4. 将最终批次(原始+后见之明)转换为张量。
HAC算法的核心理念是将这些组件以层次化方式整合:高层策略生成子目标,低层策略在指定时间窗口内尝试实现这些子目标,而两个层次都通过离策略学习方法(包括后见之明重标记)从经验中进行优化。
实验结果分析:
奖励表现: 实验数据显示智能体表现出负向学习趋势,环境奖励在整个训练过程中持续下降。
执行效率: 未观察到效率提升;回合长度持续维持在接近最大允许步数的水平。
层次化学习问题: 高层损失函数呈现上升趋势,表明目标设定策略性能有所恶化。低层损失数据缺失或未显示,这进一步表明子目标实现层次也存在学习障碍。
探索策略: 尽管实施了标准线性epsilon衰减探索机制,但未能有效解决基础学习问题。
基于以上分析,该HAC实现未能在网格世界任务环境中实现有效学习。关键性能指标显示,随时间推移,性能呈现下降趋势,表明在层次化学习框架实现中存在结构性问题。
17、MCTS:基于模拟的探索规划算法
蒙特卡洛树搜索(Monte Carlo Tree Search, MCTS)将强化学习的重点从学习覆盖整个状态空间的值函数或策略函数,转变为针对当前状态的在线规划方法。
给定特定状态,MCTS利用环境模型(或模拟器)生成大量可能的未来轨迹,构建搜索树以确定当前最有前景的动作选择。
MCTS算法的每次迭代包含四个关键步骤,从当前状态对应的根节点开始:
选择(Selection): 根据选择策略(如UCB1)递归地选择子节点,从根节点遍历现有树结构。该策略平衡了探索(访问较少探索的节点)与利用(访问过去模拟中获得高平均奖励的节点)。此过程持续直到达到一个叶节点(尚未完全扩展的节点)。
扩展(Expansion): 若叶节点非终止节点,通过选择一个未尝试的动作并模拟执行,生成新状态,并将表示该新状态的节点添加到搜索树中。
模拟(Simulation/Rollout): 从新扩展节点(若无法扩展则为选择的叶节点)开始,使用简单、高效的"rollout策略"(通常为随机动作选择)进行模拟,直到回合结束或达到预设深度限制。记录此模拟过程获得的累积奖励。
反向传播(Backpropagation): 使用模拟获得的结果更新选择和扩展阶段访问过的所有节点的统计数据,包括访问计数和累积奖励值。
首先,我们需要定义树节点的数据结构:
class MCTSNode: """ 表示蒙特卡洛树搜索中的节点。 """ def __init__(self, state: Tuple[int, int], parent: Optional['MCTSNode'] = None, action: Optional[int] = None): self.state = state self.parent = parent self.action_that_led_here = action # 父节点采取的动作导致此节点 self.children: Dict[int, MCTSNode] = {} # 映射动作 -> 子节点 # 获取可能动作的函数(取决于环境) self.untried_actions: List[int] = self._get_possible_actions(state) self.visit_count: int = 0 self.total_value: float = 0.0 # rollout奖励总和 def _get_possible_actions(self, state): # 占位符:用实际环境调用替换 # 网格世界的示例(假设env可访问或已传递): if env.is_terminal(state): return [] return list(range(env.get_action_space_size())) # 或env.get_valid_actions(state) def is_fully_expanded(self) -> bool: return not self.untried_actions def is_terminal(self) -> bool: # 占位符:用实际环境调用替换 return env.is_terminal(self.state) def get_average_value(self) -> float: return self.total_value / self.visit_count if self.visit_count > 0 else 0.0 def select_best_child_uct(self, exploration_constant: float) -> 'MCTSNode': """ 选择具有最高UCT评分的子节点。""" best_score = -float('inf') best_child = None for action, child in self.children.items(): if child.visit_count == 0: score = float('inf') # 优先选择未访问节点 else: exploit = child.get_average_value() explore = exploration_constant * math.sqrt(math.log(self.visit_count) / child.visit_count) score = exploit + explore if score > best_score: best_score = score best_child = child if best_child is None: # 只应在节点还没有子节点时发生 return self # 理想情况下不应在没有子节点的节点上调用 return best_child
该节点类存储状态信息、父子节点关系链接以及关键的统计数据:访问计数(N)和累积价值(W)。
MCTS主搜索函数协调四个核心步骤(选择、扩展、模拟、反向传播),从当前状态开始执行大量模拟,构建搜索树并利用积累的统计数据指导探索过程,最终确定最优即时动作。
实验结果分析:
性能表现: MCTS算法持续实现正向总奖励,移动平均值稳定维持在+6至+7区间。这表明在给定的模拟预算(100次模拟)条件下,规划过程能有效找到高奖励路径。
执行效率: 回合长度普遍较低且相对稳定,平均约为30-40步。数据未显示明显的下降趋势,这表明MCTS从早期阶段就能够发现高效路径,而非通过多回合学习逐步提升效率。
规划特性: 作为规划算法,MCTS的性能主要取决于每个回合内的搜索质量。结果显示搜索过程持续有效,但不呈现传统强化学习算法中参数更新带来的典型"学习曲线"特征。
路径可视化: 最后一个回合的智能体轨迹展示了从起点('S')到目标('G')的清晰、有向路径,直观验证了规划成功。
综合评估,MCTS算法有效利用其规划能力(基于100次模拟的预算),在网格世界环境中稳定地发现通往目标的高质量、相对高效的路径,从训练初期就能实现稳定的正向奖励。
18、PlaNet:潜在空间规划网络
PlaNet(Deep Planning Network)代表一种先进的基于模型的强化学习方法,特别适用于处理高维观察数据(如图像)的学习任务。
其核心创新在于不直接在复杂的观察空间中学习世界模型(动力学模型),而是在学习得到的紧凑潜在空间中构建模型并执行规划,大幅提高了计算效率。
算法流程:智能体首先观察环境状态(o_t),编码器将其(可能结合历史上下文)映射到潜在状态表示(s_t)。
规划器组件(通常采用交叉熵方法,CEM)利用当前潜在状态和习得的世界模型,在未来时域内搜索最优动作序列。
算法仅执行搜索得到的最优序列中的第一个动作(a_t*),并将由此产生的观察(o_{t+1})、执行的动作(a_t*)、获得的奖励(r_t)及完成标志存储到回放缓冲区中。
同时,系统会从缓冲区中采样序列批次,用于训练和优化世界模型(包括编码器、转换预测器、奖励预测器等组件)。
实现一个完整的、支持图像处理和递归状态空间模型(RSSM)的PlaNet系统较为复杂。为简化说明,我们可以使用向量状态(如钟摆系统)的简化版本:
"潜在状态"可由环境的状态向量(或其简单MLP编码)近似表示
世界模型简化为预测下一状态向量和奖励的多层感知器(MLP)网络
# 简化的动力学模型(预测下一个状态向量和奖励) class DynamicsModel(nn.Module): def __init__(self, state_dim: int, action_dim: int, hidden_dim: int = 200): super(DynamicsModel, self).__init__() self.fc1 = nn.Linear(state_dim + action_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc_next_state = nn.Linear(hidden_dim, state_dim) self.fc_reward = nn.Linear(hidden_dim, 1) def forward(self, state: torch.Tensor, action: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: # 连接状态和动作 x = torch.cat([state, action], dim=-1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) pred_next_state = self.fc_next_state(x) pred_reward = self.fc_reward(x) return pred_next_state, pred_reward
该网络学习基于当前状态和动作预测即时的状态转移和奖励。
规划器组件使用这个预测模型搜索最优动作序列。交叉熵方法(CEM)是PlaNet中常用的规划算法:
# CEM规划器概述 def cem_planner(model: DynamicsModel, initial_state: torch.Tensor, horizon: int, num_candidates: int, num_elites: int, num_iterations: int, gamma: float, action_low, action_high, action_dim, device) -> torch.Tensor: # 初始化动作分布(例如,高斯mean=0, std=high) action_mean = torch.zeros(horizon, action_dim, device=device) action_std = torch.ones(horizon, action_dim, device=device) # 开始时方差高 for _ in range(num_iterations): # 1. 采样候选动作序列(batch, horizon, action_dim) action_dist = Normal(action_mean, action_std) candidate_actions = action_dist.sample((num_candidates,)) candidate_actions = torch.clamp(candidate_actions, torch.tensor(action_low, device=device), torch.tensor(action_high, device=device)) # 2. 使用模型评估序列 total_rewards = torch.zeros(num_candidates, device=device) current_states = initial_state.repeat(num_candidates, 1) with torch.no_grad(): for t in range(horizon): actions_t = candidate_actions[:, t, :] next_states, rewards = model(current_states, actions_t) total_rewards += (gamma ** t) * rewards.squeeze(-1) # 确保reward被挤压 current_states = next_states # 3. 选择精英动作序列 _, elite_indices = torch.topk(total_rewards, num_elites) elite_actions = candidate_actions[elite_indices] # 4. 重新拟合动作分布 action_mean = elite_actions.mean(dim=0) action_std = elite_actions.std(dim=0) + 1e-6 # 添加epsilon保持稳定性 # 返回最终平均序列的第一个动作 return action_mean[0]
CEM规划器通过迭代优化过程,使用学习的模型模拟多条轨迹,并将分布集中在高性能序列上,从而细化动作序列分布。
训练过程包括收集交互序列,将其存储在经验回放缓冲区中,并训练动力学模型以最小化预测误差(通常使用下一状态和奖励的均方误差损失):
# --- 模型训练概述 --- # (假设已定义model, optimizer, sequence_buffer) for _ in range(num_train_steps): 1. 从sequence_buffer中采样序列批次 2. 对于序列中的每一步(或其子集): - 从批次获取state_t, action_t, reward_t, next_state_t - 预测next_state_pred, reward_pred = model(state_t, action_t) - 计算损失 = MSE(next_state_pred, next_state_t) + MSE(reward_pred, reward_t) 3. 平均批次/步骤的损失 4. optimizer.zero_grad() 5. loss.backward() 6. optimizer.step()
PlaNet算法展示了如何通过学习精确的世界模型,即使在压缩的潜在表示空间中,也能实现高效的规划,从而在复杂环境中实现高样本效率的学习。
实验结果分析:
奖励表现: PlaNet展现出显著的学习进展。每回合平均奖励从极低的初始值(约-800)快速提升至较高水平(移动平均值达到约-100至-200)。然而,即使在初始快速改善后,迭代间的表现仍存在明显波动。
模型学习效果: 平均模型损失(对数刻度)在初期阶段(前~25次迭代)大幅下降,降低了约两个数量级。随后损失在较低值处趋于稳定,表明PlaNet能够迅速学习钟摆系统动力学和奖励预测的准确模型。
基于模型的学习有效性: 奖励的显著改善与模型损失的快速下降呈现强相关性。这凸显了PlaNet的核心优势:通过快速构建准确的世界模型,使其规划组件能够发现高奖励的动作策略。
综合评估,PlaNet在钟摆任务上展示了基于模型学习的显著效果。它能够迅速建立准确的世界动力学模型,从而使其规划机制能够实现显著的性能提升,尽管性能仍有一定波动性。
算法选择指南
针对不同任务场景的强化学习算法选择:
对于简单的离散动作任务,Q-Learning或SARSA算法是理想的起点。当任务要求更高的稳定性和样本效率时,尤其是在复杂环境中,近端策略优化(PPO)算法通常表现出较好的鲁棒性和学习效率。
对于机器人控制等连续动作空间问题,软演员-评论家(SAC)和深度确定性策略梯度(DDPG)算法是有力的选择,其中SAC通常在稳定性和探索效率方面表现更为出色。
若环境模拟成本较低,基于模型的方法(如PlaNet)或基于规划的算法(如MCTS)可能会带来显著的性能优势。
尽管没有放之四海而皆准的算法选择,但PPO和SAC因其在多种现代强化学习任务中的良好表现而被广泛采用。建议从这些算法入手,并根据具体环境特性和任务目标进行适当调整。最优算法的选择最终取决于特定应用场景的具体需求和约束条件。
本文代码:
https://github.com/FareedKhan-dev/all-rl-algorithms
编辑:王菁
关于我们
数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。
新浪微博:@数据派THU
微信视频号:数据派THU
今日头条:数据派THU