【CMU博士论文】语境:表征学习的机制

来源:专知
本文约1000字,建议阅读5分钟
我们提出了两个通用目标——SVME 和 KISE,用于学习语境结构。

图片

本论文建立了语境结构理论,用数学方法表征表征学习的机制,也称为预训练。尽管基础模型在实践中取得了显著的成功,但仍不清楚它们学习到的表征是什么,以及这些表征为何对各种不同的下游任务有用。对表征学习的科学理解至关重要,尤其是在模型规模扩展已经呈现边际效益递减的情况下,设计新的预训练方法成为进一步发展的必要条件。

先前的工作对不同的表征学习方法进行了各自不同的处理,而语境结构理论则提供了一个统一的框架,用于阐明这些方法学习到的表征。核心论点是,表征是通过输入 X 和一个上下文变量 A 之间的关联来学习的。我们证明了,如果一个编码器捕获了这种关联的最大信息,在这种情况下我们说编码器学习了“语境结构”,那么它将在与该上下文兼容的任务类上达到最佳表现。我们还展示了,当 X 和 A 之间的关联既不太强也不太弱时,上下文最为有用。语境结构理论的重要含义是,仅仅增加模型规模将带来递减的回报,而进一步的进展需要更好的上下文。

我们证明了许多现有的预训练目标可以学习语境结构,包括监督学习、自监督学习、生成模型等。在此基础上,我们提出了两个通用目标——SVME 和 KISE,用于学习语境结构。我们还展示了如何将多个上下文混合在一起,这是从现有上下文中创建更好上下文的轻松方法。然后,我们为表征学习证明了统计学习界限,并将该框架扩展到半监督学习的谱变换核回归。最后,我们讨论了从预训练到下游任务的数据分布变化的影响。

图片

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值