收藏 | 27个机器学习小抄(附学习资源)

640?wx_fmt=png&wxfrom=5&wx_lazy=1

来源:机器学习算法与自然语言处理

本文多资源,建议收藏
本文针对机器学习基本概念及编程和数学基础,为你列出相应的学习资源。


机器学习(Machine Learning)有很多方面,当我开始研究学习它时,我发现了各种各样的“小抄”,它们简明地列出了给定主题的关键知识点。最终,我汇集了超过 20 篇的机器学习相关的小抄,其中一些我经常会翻阅,而另一些我也获益匪浅。这篇文章里面包含了我在网上找到的 27 个小抄,如果你发现我有所遗漏的话,请告诉我。


机器学习领域的变化是日新月异的,我想这些可能很快就会过时,但是至少在目前,它们还是很潮的。


机器学习


这里有一些有用的流程图和机器学习算法表,我只包括了我所发现的最全面的几个。


1. 神经网络架构


http://www.asimovinstitute.org/neural-network-zoo/


640?wx_fmt=png&wxfrom=5&wx_lazy=1

2. 神经网络公园


微软 Azure 算法流程图

 

https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet


640?wx_fmt=png

用于微软 Azure 机器学习工作室的机器学习算法


3. SAS 算法流程图


SAS:我应该使用哪个机器学习算法?


http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/


640?wx_fmt=png


4. 算法总结


http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/


640?wx_fmt=png


5. 机器学习算法指引


已知的机器学习算法哪个最好?


http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/


640?wx_fmt=jpeg


6. 算法优劣


https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend


640?wx_fmt=jpeg


Python


自然而然,也有许多在线资源是针对 Python 的,这一节中,我仅包括了我所见过的最好的那些小抄。


1. 算法


https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/


640?wx_fmt=png


2. Python 基础


资源 1:http://datasciencefree.com/python.pdf


640?wx_fmt=png


资源 2:https://www.datacamp.com /community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA


640?wx_fmt=png


3. Numpy


资源1:https://www.dataquest.io/blog/numpy-cheat-sheet/


640?wx_fmt=png


资源 2:http://datasciencefree.com/numpy.pdf


640?wx_fmt=png


资源 3:https://www.datacamp.com /community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE


640?wx_fmt=png


资源 4:https://github.com/donnemartin/data-science-ipython-notebooks/blob/master /numpy /numpy.ipynb


640?wx_fmt=png


4. Pandas


资源1:http://datasciencefree.com/pandas.pdf


640?wx_fmt=png


资源 2:https://www.datacamp.com /community/blog/python-pandas-cheat-sheet#gs.S4P4T=U


640?wx_fmt=png


资源 3:https://github.com/donnemartin/data-science-ipython-notebooks/blob/master /pandas/pandas.ipynb


640?wx_fmt=png


5. Matplotlib


资源 1:https://www.datacamp.com/ community/blog/python-matplotlib-cheat-sheet


640?wx_fmt=png


资源 2:https://github.com/donnemartin/data-science-ipython-notebooks/blob/master /matplotlib/matplotlib.ipynb


640?wx_fmt=png


6. Scikit Learn


资源 1:https://www.datacamp.com /community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk


640?wx_fmt=png


资源 2:http://peekaboo-vision.blogspot.de/2013 /01/machine-learning-cheat-sheet-for-scikit.html


640?wx_fmt=png


资源 3:https://github.com/rcompton /ml_cheat_sheet/blob/master/supervised_learning.ipynb


640?wx_fmt=png


7. Tensorflow


https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks /1_Introduction/basic_operations.ipynb


640?wx_fmt=png


8. Pytorch


https://github.com/bfortuner/pytorch-cheatsheet


640?wx_fmt=png


数学


如果你希望了解机器学习,那你就需要彻底地理解统计学(特别是概率)、线性代数和一些微积分。我在本科时辅修了数学,但是我确实需要复习一下了。这些小抄提供了机器学习算法背后你所需要了解的大部分数学知识。


1. 概率


http://www.wzchen.com/s/probability_cheatsheet.pdf


640?wx_fmt=png


2. 线性代数


四页内解释线性代数


https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf


640?wx_fmt=png


3. 统计学


http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf


640?wx_fmt=png


4. 微积分


http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N


640?wx_fmt=png


原文链接:

https://unsupervisedmethods.com/cheat-sheet-of-machine-learning-and-python-and-math-cheat-sheets-a4afe4e791b6


640?wx_fmt=png

640?wx_fmt=jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值