论文笔记
TtingZh
这个作者很懒,什么都没留下…
展开
-
《Deep Learning for Aspect-Based Sentiment Analysis》阅读笔记
一、Model这篇文章采用两部分进行方面级情感分析,一个部分用来寻找 EA对;一个用来进行情感极性的分析1、aspect model两层神经网络,全连接+softmax ,最后的输出是19种方面的概率分布值。在进行实验前,先做的处理是对方面个数进行降维,对于出现频率较少的实体直接标记为other。2、sentiment model使用递归神经网络进行情感分析较为合适。因为现在的...原创 2020-01-01 11:04:54 · 1042 阅读 · 0 评论 -
《Sentiment Analysis Based on Deep Learning Approaches》阅读笔记
2018 IEEE 参考意义不大【Lexicon is further divided into dictionary based and corpus based approach which further uses semantic and statistical methods to get the sentiment polarity of the text used in the...原创 2019-12-30 16:33:04 · 485 阅读 · 0 评论 -
《Deep Learning for Sentence Classification》阅读笔记
2017年IEEE的,感觉参考意义不是太大一步步介绍句子分类的所用技术和发展历史下面介绍深度学习模型A、word embedding 先把文档中的每个词利用词典顺序表示成onehot形式,并把它们进行拼接,输入嵌入层,嵌入层的作用可以看作是一个权重矩阵,得到每个【注:每个的】词的表示 e = Wx. 这样整个文档就是(e1, e2, e3 .....)的低维稠密向量了B-...原创 2019-12-30 15:36:54 · 173 阅读 · 0 评论 -
《Review Sentiment Analysis Based on Deep Learning》论文阅读笔记
这篇论文的本质是将多个方面的特征进行结合进行情感分析,关键点在于不同情感特征的抽取A、词频特征认为只有情感词会对文本的情感结果起作用,而不是每一个词都会有作用对于某一篇文章,计算dimension长度个词的词频,这个长度可以理解为多退少补得到了一个【1,dimension】长度的向量,利用logistic classifier作为这个层面上的激活函数B、上下文窗口特征认为每...原创 2019-12-30 11:28:28 · 632 阅读 · 0 评论 -
《Attention and Lexicon Regularized LSTM for Aspect-based Sentiment Analysis》阅读笔记
摘要:端到端的深度神经网络不能很容易地适应一些明显的问题,比如说,训练数据量少。注意力机制很可能过度关注句子的某一部分,无法适用性的改变注意力机制。本文加入词典信息使得模型更加鲁棒和灵活,同时研究了正则化注意力向量的作用。intrduction: 提出一个结合词典信息和注意力机制的LSTM的模型用来进行aspect 情感分类methodologyattention-lstm 通过...原创 2019-12-10 16:11:20 · 520 阅读 · 1 评论 -
《一种用于基于方面情感分析的深度分层网络模型》论文阅读笔记
结合区域卷积神经网络和分层LSTM网络的深度分层模型来解决基于特定方面的情感极性分析问题,挖掘特定方面在整个评论的长距离依赖关系。通过词语层和句子层的分层注意力机制,更加有效的识别出句子中不同方面的情感极性一个待分类句子在网络中的训练框架主要由以下三部分组成: (1) 区域CNN , 按目标词分割成固定长度的不同区域,一个区域对应一个区域CNN 提取不同区域的局部特征信息(...原创 2019-12-09 21:55:20 · 319 阅读 · 0 评论 -
《基于多注意力卷积神经网络的特定目标情感分析》论文阅读笔记
结合多注意力机制的卷积神经网络卷积神经网络能够接收平行输入的文本信息加入词性注意力机制,能从多种特征信息关注句子的目标词和其他词语之间的联系,准确表示出每一个词在句子中的重要程度。主要涉及到三种注意力机制(1)词向量注意力机制(2)词性注意力机制(3)位置注意力机制使用双向扫描算法,标识不同词语在句子中的重要程度(1)词向量注意力机制,是目标词的词向量和句子的词向量进行运算...原创 2019-12-09 16:18:48 · 628 阅读 · 1 评论 -
情感分析中的深度学习
一、情感分析中的基本模型1、前馈神经网络(FNN) 不考虑输入数据具备的任何特定结构常与正则化结合使用,主要解决问题:神经网络有大量隐藏层,隐藏层非常难以训练(梯度消失和过拟合问题)。FNN 由一个输入层、一个(浅层网络)或多个(深层网络,因此叫作深度学习)隐藏层,和一个输出层构成。每个层(除输出层以外)与下一层连接。具有两个主要特征:加权平均值和激活函数。加权平均过程,即将前一...翻译 2018-09-13 14:48:20 · 9905 阅读 · 0 评论 -
Exploring Temporal (时间)Patterns of Suicidal Behavior on Twitter阅读笔记
INTRODUCTION本文的目的是在研究自杀者关于自杀在推特上交流的时间模式 MATERIALS AND METHODS数据收集和预处理利用自杀相关的短语词汇到推特上爬取数据,然后去除停用词,爬去的数据包括,推特ID,userID, 发布时间,推特文本发现自杀相关的主题通过主题建模捕捉与自杀相关的语义主题的一些有趣事实,通过NFM找到。首先,利用与自杀有关的推特发现...原创 2018-08-31 18:57:34 · 160 阅读 · 0 评论 -
Public Perception Analysis of Tweets During the 2015 阅读笔记
目标:理解公众对于疾病爆发的态度并且证明CNN在对outbreak-related tweets 分类的优势方法:设计了一个用于分析用户对于疾病爆发态度的综合框架,该框架分为3个维度:讨论主题,情感表达,对疫苗的态度。先利用“Measles”爬取数据,然后根据那三个维度进行标注,然后建立了一个CNN分类模型,并且在CNN模型中利用不同的embedding方法(1、Stanford GloVe ...原创 2018-08-31 11:29:41 · 168 阅读 · 0 评论 -
Extracting psychiatric stressors for suicide from social media using deep learning 阅读笔记
补习一下功课:迁移学习迁移学习:知识迁移(knowledge transfer)是一个不错的选择,即把B领域中的知识迁移到A领域中来,提高A领域分类效果,不需要花大量时间去标注A领域数据。迁移学习领域有三个研究问题:(1)迁移什么;(2)如何迁移;(3)什么时候迁移2、转导学习与推导学习区别推到学习:需要先用一些样本(training set)建立一个模型,再基于建立好的模型去去预测...原创 2018-08-30 17:29:04 · 251 阅读 · 0 评论