INTRODUCTION
本文的目的是在研究自杀者关于自杀在推特上交流的时间模式
MATERIALS AND METHODS
数据收集和预处理
利用自杀相关的短语词汇到推特上爬取数据,然后去除停用词,爬去的数据包括,推特ID,userID, 发布时间,推特文本
发现自杀相关的主题
通过主题建模捕捉与自杀相关的语义主题的一些有趣事实,通过NFM找到。首先,利用与自杀有关的推特发现潜在的话题;第二,优化潜在主题的结构,,寻找有意义的语义
为ST_score时间序列建模
利用NMf建模所发现的热点是主题,提出了一个测量标准suicidal topic related score (STScore),来评估相关的风险因素。
挖掘行为模式
STScore是震荡的,代表不同的行为模式,使用傅里叶级数为时间序列分析建模,很容易研究他们行为的周期模型
结果
自杀主题发现
经评估发现,自杀主题数目为13是最合适的,13个主题所对应的相关词论文中以表格的形式展现出来
行为模式发现
根据时间序列的模式进行人行为状态的分析
DISCUSSION AND IMPLICATIONS
争取发现更多的序列