Exploring Temporal (时间)Patterns of Suicidal Behavior on Twitter阅读笔记

 INTRODUCTION

本文的目的是在研究自杀者关于自杀在推特上交流的时间模式

 

MATERIALS AND METHODS

数据收集和预处理

利用自杀相关的短语词汇到推特上爬取数据,然后去除停用词,爬去的数据包括,推特ID,userID, 发布时间,推特文本

发现自杀相关的主题

通过主题建模捕捉与自杀相关的语义主题的一些有趣事实,通过NFM找到。首先,利用与自杀有关的推特发现潜在的话题;第二,优化潜在主题的结构,,寻找有意义的语义

为ST_score时间序列建模

利用NMf建模所发现的热点是主题,提出了一个测量标准suicidal topic related score (STScore),来评估相关的风险因素。

挖掘行为模式

STScore是震荡的,代表不同的行为模式,使用傅里叶级数为时间序列分析建模,很容易研究他们行为的周期模型

 

结果

自杀主题发现

经评估发现,自杀主题数目为13是最合适的,13个主题所对应的相关词论文中以表格的形式展现出来

行为模式发现

根据时间序列的模式进行人行为状态的分析

 

DISCUSSION AND IMPLICATIONS

争取发现更多的序列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值