问题描述:注意和“找第K大的数”相区别
方法1:可利用“找第K大的数”问题的解法,经过多次一趟排序,找出第K大的数,那么该数以及该数左边的所有数即所求的“前K大的所有数”(一趟排序的性质)
方法2:利用一个大小为K的小顶堆进行辅助操作,具体方法为:
- 将数组前K个元素建成一个小顶堆
- 扫描数组剩下的N-K个元素,每次扫描一个并进行判断:若该元素大于(不包括等于)小顶堆的堆顶元素,则用该元素替换堆顶元素,并进行一次“堆性质维持”
- 循环上一步直至扫描完数组的所有元素,则小顶堆内的所有元素即问题所求的“前K大的所有数”
代码:
void min_heapify(int a[], int n, int k){ //小顶堆性质维持
assert(a != NULL);
assert(n > 0);
assert(k >= 0 && k < n);
int min = k;
if(k*2 < n && a[k*2] < a[min]) min = k*2;
if(k*2+1 < n && a[k*2+1] < a[min]) min = k*2+1;
if(min != k){
swap(&a[k], &a[min]);
min_heapify(a, n, min);
}
}
void process(int a[], int n, int k){
assert(a != NULL);
assert(n > 0);
assert(k > 0 && k < n);
int * heap = (int *)malloc(k*sizeof(int));
for(int i = 0; i < k; i++) heap[i] = a[i];
for(int i = k/2-1; i >= 0; i--) min_heapify(heap, k, i); //建小顶堆
for(int i = k; i < n; i++){ //扫描剩余元素
if(a[i] > heap[0]){
heap[0] = a[i];
min_heapify(heap, k, 0);
}
}
printf(">>>>>> ");
for(int i = 0; i < k; i++) printf("%d ", heap[i]);
printf("\n");
}