分层图池化:Hierarchical Graph Representation Learning with Differentiable Pooling

来源: KDD’18, 2018

论文: https://arxiv.org/abs/1806.08804

本文提出了一个层级池化的方法。在每一层,应用两个GNN,一个生成该层级的节点嵌入,一个将不同类别的节点聚类成不同的簇。这一层的输出即为下一层的输入。

1 问题与挑战

  • 从节点嵌入到图嵌入的常用方法有:简单地汇总或平均最后一层中的所有节点嵌入,引入一个连接到图中所有节点的“虚拟节点”,或使用在集合上运行的深度学习体系结构聚合节点嵌入
  • 问题:这些方法都是扁平(flat)的,即在图分类任务的时候,先为所有节点生成嵌入,然后将所有的节点一口气聚合为图嵌入。这种方法忽略了层级结构,但是在诸如有原子
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值