三种查找算法:顺序查找,二分法查找(折半查找),分块查找,散列表(以后谈)
一、顺序查找的基本思想:
从表的一端开始,顺序扫描表,依次将扫描到的结点关键字和给定值(假定为a)相比较,若当前结点关键字与a相等,则查找成功;若扫描结束后,仍未找到关键字等于a的结点,则查找失败。
说白了就是,从头到尾,一个一个地比,找着相同的就成功,找不到就失败。很明显的缺点就是查找效率低。
适用于线性表的顺序存储结构和链式存储结构。
计算平均查找长度。
例如上表,查找1,需要1次,查找2需要2次,依次往下推,可知查找16需要16次,
可以看出,我们只要将这些查找次数求和(我们初中学的,上底加下底乘以高除以2),然后除以结点数,即为平均查找长度。
设n=节点数
平均查找长度=(n+1)/2
二、二分法查找(折半查找)的基本思想:
前提:
(1)确定该区间的中点位置:mid=(low+high)/2
min代表区间中间的结点的位置,low代表区间最左结点位置,high代表区间最右结点位置
(2)将待查a值与结点mid的关键字(下面用R[mid].key)比较,若相等,则查找成功,否则确定新的查找区间:
如果R[mid].key>a,则由表的有序性可知,R[mid].key右侧的值都大于a,所以等于a的关键字如果存在,必然在R[mid].key左边的表中。这时high=mid-1
如果R[mid].key