枚举 sum = ai + b(n - i)
C[n][i] = fact[n]inv(fact[n - i]fact[i]).inv(a) is multiplicative inverse element(moduloMOD). MOD is a prime number, soinv(a) = aMOD - 2.
乘法逆元解决 除法中模的方法
代码:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
#include <vector>
#include <iomanip>
using namespace std;
const int mod =1000000007;
long long f[1000005];
long long quickpow(long long a,long long n)
{
long long b=1;
while(n>0)
{
if(n&1)
{
b=b*a;
b%=mod;
}
n>>=1;
a*=a;
a%=mod;
}
return b%mod;
}
int check(int sum,int a,int b)
{
while(sum>0)
{
int num=sum%10;
if(num!=a&&num!=b)
return 0;
sum/=10;
}
return 1;
}
int main()
{
int a,b,n;
scanf("%d%d%d",&a,&b,&n);
f[1]=1;
f[0]=1;
for(int i=2;i<=n;i++)
{
f[i]=f[i-1]*i;
f[i]%=mod;
}
long long ans=0;
for(int i=0;i<=n;i++)
{
int sum=a*i+b*(n-i);
if(check(sum,a,b))
{
int down,up;
down=n;
up=i;
long long k=f[up]*f[down-up];
k%=mod;
ans+=(f[down]*quickpow(k,mod-2))%mod;
ans%=mod;
}
}
// printf("%I64d\n",quickpow(2,10));
printf("%I64d\n",ans%mod);
}