codeforces300C. Beautiful Numbers

C. Beautiful Numbers
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Vitaly is a very weird man. He's got two favorite digits a and b. Vitaly calls a positive integer good, if the decimal representation of this integer only contains digits a and b. Vitaly calls a good number excellent, if the sum of its digits is a good number.

For example, let's say that Vitaly's favourite digits are 1 and 3, then number 12 isn't good and numbers 13 or 311 are. Also, number111 is excellent and number 11 isn't.

Now Vitaly is wondering, how many excellent numbers of length exactly n are there. As this number can be rather large, he asks you to count the remainder after dividing it by 1000000007 (109 + 7).

A number's length is the number of digits in its decimal representation without leading zeroes.

Input

The first line contains three integers: abn (1 ≤ a < b ≤ 9, 1 ≤ n ≤ 106).

Output

Print a single integer — the answer to the problem modulo 1000000007 (109 + 7).

Examples
input
1 3 3
output
1
input
2 3 10
output
165

乘法逆元:(a/b)%mod=a*(b^(mod-2))   mod为素数。

枚举构成要求数字的两个数的个数,对于每种情况假设需要a的个数为n b的个数为m则构成这个数字的方案数有(n+m)!/(n!*m!); 数过大直接求无法直接计算除法用逆元

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<list>
#include<vector>
#define MOD 1000000007
using namespace std;
const int maxn=1000010;
long long f[maxn];
void init(){
	f[0]=f[1]=1;
	for(int i=2;i<maxn;++i){
		f[i]=f[i-1]*i%MOD;
	}
}
long long Pow(long long a,long long b){  
    if(b==0)return 1%MOD;  
    long long t=Pow(a,b>>1);  
    t=t*t%MOD;  
    if(b&1)t=t*a%MOD;  
    return t;  
      
}
bool judge(long long  a,long long  b,long long k){
	while(k){
		long long x=k%10;
		if(x!=a&&x!=b)return false;
		k/=10;
	}
	return true;
}
int main()
{
	init();
	long long i,j,k,n,a,b;
	while(scanf("%lld%lld%lld",&a,&b,&n)!=EOF){
		long long ans=0;
		for(i=0;i<=n;++i){
			if(judge(a,b,i*a+(n-i)*b)){
				long long num=f[i]*f[n-i]%MOD;
				ans=(ans+f[n]*Pow(num,MOD-2)%MOD)%MOD;
			}
		}
		printf("%lld\n",ans);
	}
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值