机器学习
文章平均质量分 80
会分析的小驼
此人很懒,什么都没有写
展开
-
机器学习教程 二.在股票上的回归预测
这一篇算是实战篇,如果有对里面的步骤或者代码不是很明白,不用担心我们现在要做是知道机器学习的整个流程,心有余力可以查查资料,我会在后面一篇详细解释回归算法,下面我们将对股票价格利用线性回归和支持向量机两种算法构建我们的模型来预测。我们这篇博客将要学到内容包括:1,数据的预处理2,交叉验证3,构建我们的模型4,训练我们的模型5,完成我们的预测6,n_jobs的作用和如何选择我原创 2017-12-27 18:05:07 · 7984 阅读 · 2 评论 -
机器学习教程 一.初识机器学习与数据认识
这系列博客让你对机器学习有一个整体的理解,包括理论,应用,以及监督、无监督和深度学习算法的内部工作。 我将介绍线性回归、K近邻、支持向量机(SVM)、层次聚类和神经网络等。原创 2017-12-27 12:05:34 · 894 阅读 · 0 评论 -
机器学习教程 三.回归理论及代码实现
“有些事情我们知道我们知道这些事,我们还知道有些事情我们知道我们不知道。这就是说,有些事情我们不知道,但是还有些我们不知道我们不知道,也就是说有些事情我们不知道我们不知道这些事。”——《已知与未知》(Known and Unknown)。对于“有些事情我们不知道我们不知道这些事”正需要我们通过探索学习才能发现“新大陆”,那么今天我们把这任务交给机器学习吧!嘿嘿。。接下来开始我们的学习这篇博原创 2017-12-28 13:14:34 · 850 阅读 · 0 评论 -
机器学习教程 四.KNN(k最近邻)算法理解和应用
导语:商业哲学家 Jim Rohn 说过一句话,“你,就是你最常接触的五个人的平均。”那么,在分析一个人时,我们不妨观察和他最亲密的几个人。同理的,在判定一个未知事物时,可以观察离它最近的几个样本,这就是 kNN(k最近邻)的方法。我们现在开始一个新的部分:分类算法。在分类算法中,我们将介绍两个主要的算法:K近邻(KNN)和支持向量机(SVM)。虽然这两种算法都是分类算法,但他们有很大原创 2017-12-29 13:46:29 · 3583 阅读 · 0 评论 -
机器学习教程 五.SVM(支持向量机)算法理解和应用
这篇博客我本来想花大力气来写的,写到一半时发现有人已经做了充足的工作,而且写的很完美,此处膜一下July的这篇《支持向量机通俗导论(理解SVM的三层境界)》本着不重复造轮子的思想(其实我写了不一定有他好),我简单介绍SVM和如何在sklearn中运用。我们现在要学习另一种形式的监督机器学习和分类算法:支持向量机。支持向量机的目标是找到数据间的最佳分割边界。在二维空间中,你可以把它想象成分割数据集的...原创 2018-01-04 10:25:59 · 776 阅读 · 0 评论