Serval and Rooted Tree(CF1153D)-DP

题目链接
参考

题目大意

对于一个有 k 个叶子的max min操作树,在 k 个叶子中填入1~k,求树根的最大值;

思路

由于题目中不要求输出填充结果,我们可以使用“第几大”来标记大小:对于max节点,其节点值为子节点的最小值,对于min节点,其节点值为子节点的和;在这个过程中,我们压缩掉了很多无用的信息,简化了问题;

定义状态表示: f [ i ] f[i] f[i] 为在以 i 为根节点的子树中,i 的值为子树中的第几大;

定义初值:对于叶子节点 i , f [ i ] = 1 f[i]=1 f[i]=1

定义状态转移方程:
对于max节点, f [ i ] = min j  is son f [ j ] f[i]=\text{min}_{j\text{ is son}}f[j] f[i]=minj is sonf[j]
对于min节点, f [ i ] = ∑ j  is son f [ j ] f[i]=\sum_{j\text{ is son}}f[j] f[i]=j is sonf[j]

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int op[300005], f[300005];
vector<int> sn[300005];
void dfs(int x)
{
    if (sn[x].empty())
    {
        f[x] = 1;
        return;
    }
    int fmx = 1000006, fmn = 0;
    for (auto m : sn[x])
    {
        dfs(m);
        fmx = min(fmx, f[m]);
        fmn += f[m];
    }
    if (op[x])
        f[x] = fmx;
    else
        f[x] = fmn;
}
int main()
{
    int n, tmp;
    cin >> n;
    for (int i = 1; i <= n; i++)
        scanf("%d", &op[i]);
    for (int i = 2; i <= n; i++)
        scanf("%d", &tmp), sn[tmp].push_back(i);
    int k = 0;
    for (int i = 1; i <= n; i++)
        if (sn[i].empty())
            k++;
    dfs(1);
    cout << k - f[1] + 1;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值