题目大意
对于一个有 k 个叶子的max min操作树,在 k 个叶子中填入1~k,求树根的最大值;
思路
由于题目中不要求输出填充结果,我们可以使用“第几大”来标记大小:对于max节点,其节点值为子节点的最小值,对于min节点,其节点值为子节点的和;在这个过程中,我们压缩掉了很多无用的信息,简化了问题;
定义状态表示: f [ i ] f[i] f[i] 为在以 i 为根节点的子树中,i 的值为子树中的第几大;
定义初值:对于叶子节点 i , f [ i ] = 1 f[i]=1 f[i]=1 ;
定义状态转移方程:
对于max节点,
f
[
i
]
=
min
j
is son
f
[
j
]
f[i]=\text{min}_{j\text{ is son}}f[j]
f[i]=minj is sonf[j] ;
对于min节点,
f
[
i
]
=
∑
j
is son
f
[
j
]
f[i]=\sum_{j\text{ is son}}f[j]
f[i]=∑j is sonf[j] ;
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int op[300005], f[300005];
vector<int> sn[300005];
void dfs(int x)
{
if (sn[x].empty())
{
f[x] = 1;
return;
}
int fmx = 1000006, fmn = 0;
for (auto m : sn[x])
{
dfs(m);
fmx = min(fmx, f[m]);
fmn += f[m];
}
if (op[x])
f[x] = fmx;
else
f[x] = fmn;
}
int main()
{
int n, tmp;
cin >> n;
for (int i = 1; i <= n; i++)
scanf("%d", &op[i]);
for (int i = 2; i <= n; i++)
scanf("%d", &tmp), sn[tmp].push_back(i);
int k = 0;
for (int i = 1; i <= n; i++)
if (sn[i].empty())
k++;
dfs(1);
cout << k - f[1] + 1;
return 0;
}