用Matlab编写超松弛迭代法与列主元消去法

本文介绍了如何使用Matlab编程实现超松弛迭代法和列主元消去法。超松弛迭代法是Gauss-Seidel迭代法的优化,通过选择合适的松弛因子来加速收敛。列主元消去法通过简化主元搜索,提高了运算效率。文中提供了详细的函数和脚本示例,并展示了计算结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作为迭代法一种加速方法,超松弛迭代法计算公式简单,只是需要选择合适的松弛因子,保证迭代过程有较快的收敛速度。它是Gauss-Seidel迭代法的优化。而列主元消去法,因为仅按列选主元,相比完全主元消元法,省了主元搜寻时间,提高了效率。

 

SOR迭代公式:



 

 SOR编程代码如下:

 

     函数:

function [xvect,nvect,xdif]=SOR(A,b,eps,x0,w) %超松弛迭代法
m=length(b); %m为线性方程组的维数,即变量的个数
xvect=[]; %为length(b)行length(nvect)列的矩阵,存储X1~X(length(b))变量的迭代值
nvect=[]; %存贮迭代次数
xdif=[];  %存储误差 max(1<=i<=length(b))abs(xi(k+1)-xi(k))
n=1; xvect=[xvect;x0];
x1=[];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%计算由初值x0经第一次迭代后的值x1
x1(1)=x0(1)+w/A(1,1)*(b(1)-sum(A(1,[1:m]).*x0([1:m])));
for i=2:m-1
    x1(i)=x0(i)&
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值