图像处理之边缘提取与图像分割

本文探讨了图像处理中的边缘提取和图像分割技术。介绍了基于边缘算子的一阶和二阶导数检测方法,如sobel、log和canny算子,强调了canny方法在抑制噪声和检测弱边缘上的优势。此外,还提到了相位编组法,一种考虑相邻点梯度方向的边缘检测方法。对于图像分割,文章讲解了灰度门限法和四叉树分解法,讨论了如何确定合适的灰度门限以及四叉树分解的一致性标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     谈到边缘提取,按照理论的说法,即把给定图像进行分割或者将分隔的图像区域用更加简单明确的数值、符号或图形表示出来。对边缘提取,首先要先检测边缘。而检测边缘,必须先对边缘有明确的定义,matlab中对边缘的定义大概有两种:

 

1.两个具有不同灰度值的相邻区域之间总存在边缘,边缘是灰度值不连续的结果。直白地说,便是认为边缘是发生在梯度幅值较大的地方,即灰度发生突变的地方。

2.当相邻点的梯度方向相同或则相近,则这个区域可能存在边缘。

 

这两种定义其实是处于两个角度判别边缘,第一种是针对灰度的突变,第二种是针对相邻点梯度方向;于是对应这两种定义就有了不同的方法。

 

第一种:利用边缘算子做边缘检测,不连续性通常可以利用求导数的方法方便地检测到。一般常用一阶导数和二阶导数来检测边缘。

 

1)基本思想:首先是利用边缘增强算子,突出图像中的局部边缘,然后定义像素的“边缘强度”,通过设置阈值的方法提取边缘点集。但是由于噪声和图像模糊的原因,检测到的边界可能会有间断的情况发生。

 

2)两个内容:
a.用边缘算子提取边缘点集  b.在边缘点集中去除某些边缘点,填充一些边缘点,再将得到的边缘点集连接为线。

 

3)检测算子:微分算子、log算子和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值