
通常,在分析算法的计算复杂性时,都将加法和乘法运算看作基本运算来处理,即将执行一次加法或乘法运算所需的计算时间看作一个仅取决于计算机硬件处理速度的常数。这个假定仅在参加运算的整数能在计算机硬件对整数的表示范围内直接处理时才是合理的。然而,在某些情況 下需要处理很大的整数,无法在计算机硬件能直按表示的整数范围内进行处理。若用浮点数来表示它,则只能近似地表示它的大小,计算结果中的有效数字也受到限制。若要精确地表示大整数并在计算结果中要求精确地得到所有位数上的数字,就必须用软件的方法来实现大整数的算术运算。设子和丫都是n 位二进制整数,现在要计算它们的乘积 XY。可以用小学所学的方法来
设计一个计算乘积 子Y的算法,但是这样做计算步骤太多,效率较低。如果将每两个一位数
的乘法或加法看作一步运算,那么这种方法要进行O(n^2)步运算才能求出乘积XY。下面用分
冶法来设计更有效的大整数乘积算法。


如果按此式计算 XY,必须进行 4 次n/2位整数的乘法 (AC、AD、BC和BD)、3次不超过2n 位的整数加法(分别对应式中的“+”),以及2次移位(分别对应式中的乘 2”和乘 212)。所有这些加法和移位共用 C(D步运算。设7(n是2个n位整数相乘所需的运算总数,则由此可得 7(n)=0(n3)。因此,直接用此式来计算子和了的乘积并不比小学生的方法更有效。要想改进算法的计算复杂性,必须减少乘法次数。下面把 xY写成另一种形式:此式看起来似乎复杂些,但仅需做3次八/2位整数的乘法 (AC、BD和(4-BXD-C)、6次加减法和2次移位。由此可得

