5.5 多项式运算

思维导图:

5.5 多项式运算

多项式的定义
  • 单变元多项式:只考虑一个变量(x)的多项式。
  • 形式:n次多项式的一般形式是 f(x)=an​xn+an−1​xn−1+...+a1​x+a0​,其中 ��ai​ 是系数集S中的元素,且 an​=0。
  • 系数集:多项式的系数来自于指定的数集S,如实数、有理数或素数域等。
多项式运算的类型
  1. 普通多项式运算:使用代数基本规则进行的运算。
  2. 模p运算的多项式:系数在GF(p)中的多项式运算。
  3. 模n次多项式m(x)的多项式运算:系数在GF(2^n)中,将在后续章节讨论。
普通多项式运算(5.5.1)
  • 运算类型:包括加法、减法、乘法(除法也可定义,但要求S是域)。
  • 运算规则
    • 加法和减法:按项对应的系数相加或相减。
    • 乘法:采用分配律,结果的次数等于两个多项式次数之和。
示例
  • 加法示例:如果g(x)=x−x+1,则 3f(x)+g(x)=x2+2x2−x+3。
  • 乘法示例:对于同样的f(x)和g(x),2f(x)×g(x)=x3+x2−2x+2。
注意事项
  • 多项式中的变量x被视为一个不定元,一般不给x赋予具体的数值。
  • 整数集不是域,因此在整数集上的多项式不支持除法运算。

 

 

5.5.2 系数在 Zp​ 中的多项式运算

基本概念
  • :如果一个集合对于加法和乘法封闭,则这个集合是一个环。
  • 系数集:在 Zp​ 的多项式运算中,系数集是模p的整数集。
多项式运算
  • 加法和减法:对应系数相加或相减。
  • 乘法:使用分配律进行乘法,多项式的次数等于原多项式次数之和。
除法运算
  • 有理数域和整数环:在有理数域中(是域),除法结果是该域中的元素。在整数环中(不是域),除法结果可能包含商和余数。
  • 非域系数集上的除法:在非域系数集上,多项式除法可能没有定义。例如,在整数集上,(5x2)/(3x) 没有结果,因为它需要系数集中不存在的 5/35/3 的值。
除法示例
  • GF(2)上的多项式除法:在GF(2)中,加法等价于异或(XOR)运算,乘法等价于逻辑与(AND)运算。图5.6展示了GF(2)上多项式运算的例子。
不可约多项式
  • 定义:如果一个多项式不能表示为两个次数较低的多项式的乘积,则称为不可约多项式,类似于整数中的素数。
最大公因式
  • 定义:如果一个多项式可以同时整除两个多项式且是它们所有共同因式中次数最高的,则称为最大公因式。
  • 计算方法:使用改写的Euclid算法来计算两个多项式的最大公因式。

 

5.5.4 多项式运算的小结

一般多项式算术
  • 变量不赋值:在一般多项式算术中,变量x被视为不定元,不赋予具体数值。
  • 代数运算:对多项式执行基本的代数运算,包括加法、减法、乘法和除法。
  • 除法的限制:多项式除法只在系数属于域的元素时有效,否则不可行。
域GF(2)上的多项式算术
  • 运算包括:在域GF(2)上,多项式的加法、减法、乘法和除法都是可行的。
  • 除法的特性:在GF(2)上的多项式除法通常不是整除,而是产生商和余数。
Euclid算法的应用
  • 最大公因子:Euclid算法可以扩展到域上,用于求两个多项式的最大公因子。
下一步
  • 构造有限域:本节所讨论的知识为构造阶为p^n的有限域提供了基础,这将在下一节中探讨

 

 

 

 总结:

重点

  1. 一般多项式算术:理解一般多项式算术中,变量被视为不定元,并应用代数的基本规则(加、减、乘、除)。
  2. 多项式除法的限制:多项式除法只在系数集是一个域时可行。
  3. 域上的多项式算术:在域(如GF(2))上的多项式运算包括加法、减法、乘法和除法,但除法通常产生商和余数。
  4. Euclid算法的应用:使用Euclid算法求域上两个多项式的最大公因子。

难点

  1. 多项式除法的理解:理解并正确应用多项式除法,特别是在非整数系数集上的多项式除法。
  2. Euclid算法在多项式上的应用:扩展Euclid算法到多项式上,以求得最大公因子。
  3. 系数集的属性:理解系数集是否构成域,以及这如何影响多项式运算。

易错点

  1. 误用代数规则:在多项式运算时错误应用基本代数规则,尤其是在多项式的乘法和除法中。
  2. 忽视系数集的性质:在进行多项式除法时忽略系数集是否为域,导致错误的运算。
  3. 多项式除法的误解:误解多项式除法在非域系数集上的运算方式,如在整数集上尝试进行标准除法

<think>嗯,用户想用C语言实现最小二乘法拟合多项式曲线,需要方法或代码示例。首先,我得回忆一下最小二乘法的基本原理。最小二乘法是通过最小化误差平方和来找到最佳拟合曲线。多项式拟合的话,应该涉及到构造一个方程组,解这个方程组来得到多项式的系数。 记得之前看过一些引用资料,引用1提到最小二乘法可以容忍数据点的误差,并且能拟合任意次数的多项式。引用2和3也详细说明了算法步骤和源码。所以可能需要根据这些引用来构建代码的结构。 首先,需要确定多项式的次数,比如用户可能想拟合二次、三次等。然后,根据数据点构造法方程。法方程的矩阵形式应该是X^T X a = X^T y,其中X是设计矩阵,a是系数向量,y是观测值。解这个线性方程组就能得到系数。 接下来,考虑如何在C语言中实现矩阵运算。可能需要用二维数组来表示矩阵,然后进行矩阵乘法、转置,以及解线性方程组的算法,比如高斯消元法。不过,高斯消元对于小规模的矩阵还行,如果多项式次数高的话可能要考虑其他方法,但用户可能只需要基础实现,所以高斯消元应该足够。 然后,代码的结构大概分为几个步骤:读取数据点,构造矩阵X和向量y,计算X^T X和X^T y,解方程组得到系数。需要处理的数据点可能由用户输入或者从文件读取,但示例代码里可能需要写死或者用简单的例子。 例如,假设用户有n个数据点,拟合m次多项式。构造X矩阵时,每个元素是x的幂次,比如第i行的第j列是x_i的j次方。然后计算X转置乘以X,得到一个(m+1)x(m+1)的矩阵,以及X转置乘以y,得到右边的向量。解这个方程组就能得到系数。 需要注意的问题包括矩阵求逆的稳定性,可能在实际应用中需要加入正则化或者使用更稳定的算法,但示例代码可能不需要这么复杂。另外,处理浮点数的精度问题,但C语言的双精度应该可以应付。 然后,参考引用3中的步骤,可能包括初始化矩阵、计算各项的和,构建法方程,解方程。代码示例可能需要动态分配内存,但为了简单,可以假设最大次数,比如用固定大小的数组。 用户可能需要代码示例和解释,所以需要写出一个完整的C程序,包含main函数,数据点输入,矩阵运算,高斯消元,然后输出系数。同时,注释要解释关键步骤。 测试数据的话,可以给出一个例子,比如拟合二次曲线,数据点符合某个二次函数,这样用户可以看到结果是否符合预期。 最后,要提醒用户注意事项,比如数据点数量要大于多项式次数,矩阵不可逆时的处理,数值稳定性等。可能还需要提到引用4中的优化方法,比如使用其他算法来求解无约束优化问题,但示例代码可能不涉及这些。 总结一下,步骤是:构造法方程,解线性方程组,得到系数。代码结构包括矩阵运算和高斯消元法。需要注意错误处理和数值稳定性,但示例代码可能简化这些部分。</think>### 用C语言实现最小二乘法多项式曲线拟合的方法 #### 一、算法原理 最小二乘法通过最小化误差平方和求解多项式系数。设拟合多项式为: $$y = a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$$ 对$n$个数据点$(x_i,y_i)$,构造法方程: $$X^T X A = X^T Y$$ 其中$X$是范德蒙矩阵,$A$为系数向量,$Y$为观测值向量[^2][^3]。 #### 二、C语言实现步骤 1. **数据输入**:存储$x,y$数据对 2. **构造矩阵**:计算$X^T X$和$X^T Y$ 3. **解线性方程组**:使用高斯消元法 4. **输出系数**:显示多项式系数 #### 三、完整代码示例 ```c #include <stdio.h> #include <math.h> #define MAX_DEG 3 // 最大多项式次数 #define MAX_PTS 20 // 最大数据点数 void gauss_elimination(int n, double A[n][n+1]) { for (int i=0; i<n; i++) { // 列主元消去 int max_row = i; for (int k=i+1; k<n; k++) if (fabs(A[k][i]) > fabs(A[max_row][i])) max_row = k; // 交换行 for (int k=i; k<=n; k++) { double tmp = A[i][k]; A[i][k] = A[max_row][k]; A[max_row][k] = tmp; } // 消元 for (int k=i+1; k<n; k++) { double factor = A[k][i]/A[i][i]; for (int j=i; j<=n; j++) A[k][j] -= factor * A[i][j]; } } // 回代 for (int i=n-1; i>=0; i--) { A[i][n] /= A[i][i]; for (int j=i-1; j>=0; j--) A[j][n] -= A[j][i] * A[i][n]; } } int main() { // 示例数据:二次多项式y=2+3x+0.5x² double x[] = {1,2,3,4,5}; double y[] = {5.5,11,18.5,28,39.5}; int m = 2; // 多项式次数 int n = sizeof(x)/sizeof(x[0]); // 构建法方程矩阵 double A[MAX_DEG+1][MAX_DEG+2] = {0}; for (int k=0; k<=m; k++) { for (int j=0; j<=m; j++) { for (int i=0; i<n; i++) A[k][j] += pow(x[i], j+k); } for (int i=0; i<n; i++) A[k][m+1] += y[i] * pow(x[i], k); } // 解方程组 gauss_elimination(m+1, A); // 输出结果 printf("拟合多项式系数:\n"); for (int i=0; i<=m; i++) printf("a%d = %.4f\n", i, A[i][m+1]); return 0; } ``` #### 四、代码解析 1. **数据准备**:示例数据对应$y=2+3x+0.5x^2$ 2. **矩阵构建**:通过三重循环计算法方程矩阵元素 3. **高斯消元**:包含列主元选取和回代过程,增强数值稳定性 4. **复杂度**:时间复杂度为$O(m^3)$,适合低次多项式 #### 五、注意事项 1. 数据点数量$n$应满足$n > m$(多项式次数) 2. 高次多项式可能导致矩阵病态(可添加正则化项) 3. 实际应用中建议使用矩阵分解方法(如QR分解)提高稳定性[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值