4.1.3 蓝桥杯动态规划基础之LIS

本文详细介绍了蓝桥杯比赛中动态规划的基础问题——最长递增子序列(LIS),阐述了LIS的定义,并通过动态规划的方法解释了解决LIS问题的步骤,包括状态定义、状态初始化、状态转移和求解结果。同时,给出了C++实现LIS问题的示例代码,强调掌握LIS对于提升算法竞赛能力的重要性。
摘要由CSDN通过智能技术生成

蓝桥杯动态规划基础:最长递增子序列(LIS)详解

引言

在蓝桥杯等算法竞赛中,动态规划是解决问题的关键技术之一。最长递增子序列(Longest Increasing Subsequence,简称LIS)是动态规划中的经典问题,它不仅涉及动态规划的核心概念,还能够帮助理解和解决其他复杂问题。

什么是LIS?

最长递增子序列是指在一个数列中找到一个最长的子序列(不一定连续),使得这个子序列中的所有元素按照升序排列。例如,在序列 {10, 22, 9, 33, 21, 50, 41, 60, 80} 中,最长递增子序列是 {10, 22, 33, 50, 60, 80}

如何解决LIS问题?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值