4.3.3 蓝桥杯动态规划之路径相关树形DP

本文详细介绍了蓝桥杯竞赛中动态规划在处理路径相关树形问题上的应用,包括状态定义、状态转移、示例问题解析及代码实现。重点关注了路径相关问题的特性、状态复合性、多状态管理以及递归与状态更新策略,同时指出了状态转移方程设计、多状态协调、复杂树结构处理和递归逻辑中的常见难点和易错点。
摘要由CSDN通过智能技术生成

4.3.3 蓝桥杯动态规划之路径相关树形DP

引言

动态规划(DP)是解决编程竞赛中各种问题的一种核心策略,尤其是在处理树形数据结构时。路径相关的树形DP特别适用于解决树上路径优化问题,如求树上两点间最长路径、最大权值和等。本篇博客将深入探讨路径相关的树形DP及其在实际问题中的应用。

路径相关树形DP基础

路径相关的树形DP涉及到在树形结构中找到最优路径的问题。这类问题通常需要考虑两点间的路径,并在此基础上进行优化。

状态定义和转移

状态定义和转移是路径相关树形DP的核心。不同于一般的树形DP,这里的状态可能需要记录更多的信息,如路径长度、路径上的最大或最小值等。

示例问题

假设我们需要解决的问题是:在一棵树中找到权值和最大的路径。

状态定义

在这个问题中,我们可以定义两个状态:

  1. dp[u] 表示以 u 为起点的最大权值和路径。
  2. maxPath[u] 表示经过 u 的最大权值和路径。

状态转移

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值