小明的宠物袋

本文介绍了小明的宠物袋问题,这是一个关于在满足相邻宠物不打架的条件下,求解最多能装多少宠物的问题。通过分析,发现可以转化为一个二维矩阵的状态压缩动态规划问题,利用位操作来表示单元格状态,并通过状态转移找到最大宠物数量。文章详细解析了动态规划的状态定义、状态转移方程,并讨论了初始答案中最大二分匹配的不适用性,最后总结了动态规划和状态压缩在解决此类问题中的应用和优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小明的宠物袋
题目描述
小明拥有一个N×M的矩阵型宠物袋A,宠物袋的一个单元刚好可以装下一只宠物。
起初,宠物袋的某些单元已经放置了小明买的食物,这些单元将不能再用来装宠物。
现在小明准备去宠物商店购买宠物,并将购买的宠物放入宠物袋带回家。然而商店的宠物之间的关系一直不和,一旦两宠物放在相邻(上下左右)的单元,它们就会打起来。
小明想带尽可能多的宠物回家,同时也不希望宠物之间会打架。请你帮他算算,他最多可以带多少宠物回家。
输入描述
输入第1行包含两个整数N,M,表示小明宠物袋的大小。
接下来N行,每行包含M个数——aij,表示宠物袋该单元起初是否已被用来装东西(aij=1表示该单元已经装了食物,不能用来装宠物了;ai,j=0表示该单元可以用来装宠物)。
1≤N≤30,1≤M≤10,ai;j∈(0,1)。
输出描述
输出一行整数表示小明所能带走的最多宠物数。
输入输出样例
示例1
输入
23
1 Q θ
111
输出
1
运行限制
语言
最大运行时间
C++
1s
C<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值