获胜的概率2

给定n个玩家和游戏轮数k,每个玩家有若干喜欢的玩家。游戏开始时1号玩家持有花,每轮随机送给喜欢的人。求每个玩家获胜的概率,对10⁹+7取模。输入包含玩家人数、喜好列表,输出为每个玩家获胜的概率。样例输入为4人游戏,输出显示第2和第4个玩家有非零获胜概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

问题描述 有n(2≤n≤10)个玩家玩游戏,他们按1到n编号。第i(1≤i≤n)个玩家有ti个喜欢的玩家,给出第i个玩家喜欢的玩家的编号列表。 最初1号玩家拿着一朵花,游戏进行k(0≤k≤1018)个回合,每个回合拿着花的人会把花等概率地送给自己喜欢的人之一,k回合游戏后拿着花的人获胜。分别求n个人获胜的概率,对10⁹+7取模。 输入格式 第一行,包括两个正整数n,k,分别表示玩家人数和游戏轮数。 以下n行,每行首先有一个非负整数ti(1≤ti≤n),表示第i个玩家有ti个喜欢的人。然后输入ti个互不相同的正整数,表示第i个玩家喜欢的人的编号。 输出格式 共n行,每行一个正整数pi(1≤i≤n)表示k次游戏后第i个人拿着花的概率,对10⁹+7取模。 令M=10⁹+7,可以证明所求概率可以写成既约分数号的形式,其中P,q均为整数且q≠0(modM)。应输出整数p×q-¹(mod M)。 样例输入 41 224 12 224 11 样例输出 0 500060004 0 500000004 说明 1轮游戏后,花在第1个人和第3个人手中的概率为0,在第2个人和第4个人手中的概率是。 评测数据规模 2≤n≤10,0≤k≤10l⁸。 运行限制 语言 最大运行时间 最大运行内存 C++ 1s 256M C 1s 256

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值