问题描述 有n(2≤n≤10)个玩家玩游戏,他们按1到n编号。第i(1≤i≤n)个玩家有ti个喜欢的玩家,给出第i个玩家喜欢的玩家的编号列表。 最初1号玩家拿着一朵花,游戏进行k(0≤k≤1018)个回合,每个回合拿着花的人会把花等概率地送给自己喜欢的人之一,k回合游戏后拿着花的人获胜。分别求n个人获胜的概率,对10⁹+7取模。 输入格式 第一行,包括两个正整数n,k,分别表示玩家人数和游戏轮数。 以下n行,每行首先有一个非负整数ti(1≤ti≤n),表示第i个玩家有ti个喜欢的人。然后输入ti个互不相同的正整数,表示第i个玩家喜欢的人的编号。 输出格式 共n行,每行一个正整数pi(1≤i≤n)表示k次游戏后第i个人拿着花的概率,对10⁹+7取模。 令M=10⁹+7,可以证明所求概率可以写成既约分数号的形式,其中P,q均为整数且q≠0(modM)。应输出整数p×q-¹(mod M)。 样例输入 41 224 12 224 11 样例输出 0 500060004 0 500000004 说明 1轮游戏后,花在第1个人和第3个人手中的概率为0,在第2个人和第4个人手中的概率是。 评测数据规模 2≤n≤10,0≤k≤10l⁸。 运行限制 语言 最大运行时间 最大运行内存 C++ 1s 256M C 1s 256