1.3 双定量分析技术
在计算机系统设计中,定量分析技术是一种关键的工具,它使设计者能够基于性能和成本的权衡做出明智的决策。本节将探讨计算机系统设计中经常使用的定量原理,包括经常性事件的优化、Amdahl定律、CPU性能公式,以及程序的局部性原理。
1.3.1 计算机系统设计的定量原理
优化经常性事件
计算机设计的一个基本原则是重点优化经常发生的事件。这意味着设计者应将资源和优化努力集中在那些最常发生的操作上,因为这将带来最大的性能提升。例如,在CPU设计中,由于取指令和译码操作比乘法操作更为频繁,因此应优先优化这些操作。
Amdahl定律
Amdahl定律是性能优化的一个关键原理,它说明了改善系统某个部分性能对整个系统性能影响的限制。具体来说,它指出系统性能的提升受到该部分在总执行时间中所占比例的限制。这个定律帮助我们理解为什么针对系统的某一小部分进行大幅优化可能不会显著提升整个系统的性能。
CPU性能公式
CPU性能公式提供了一种计算程序执行时间的方法,强调了时钟周期数、CPI(每条指令的平均时钟周期数)和时钟周期时间三个因素对性能的影响。通过这个公式,我们可以看到改善任何一个参数都能提升性能,但这些参数相互依赖,改善其中一个可能会影响其他参数。
程序的局部性原理
程序的局部性原理指出程序访问存储器的模式不是随机的,而是倾向于集中在一小块连续的地址空间内。这个原理有两个方面:时间局部性和空间局部性。时间局部性指一旦访问了某些数据或指令,不久之后很可能再次访问;空间局部性指如果访问了一个存储位置,那么其附近的位置很可能也会被访问。这一原理是设计高效缓存和存储系统的基础。
定量原理在实践中的应用
通过应用这些定量原理,设计者可以系统地评估不同设计选择的性能影响。例如,通过优化经常性事件,可以确保系统设计的重点放在性能提升最大化的领域;而Amdahl定律则提醒我们关注整体性能提升而不仅仅是局部优化;CPU性能公式则提供了一个框架来评估不同设计选择对性能的具体影响;最后,程序的局部性原理指导了高效缓存设计,以减少访问延迟并提升整体系统性能。
这些原理不仅适用于硬件设计,也适用于软件开发、系统配置和性能调优等多个方面,是计算机系统设计和分析中不可或缺的工具。
1.3.2 计算机系统的性能评测
计算机系统的性能评测是一个复杂而重要的过程,它旨在提供一个全面和客观的评价标准,以比较不同计算机系统的性能。性能评测不仅关键于设计和优化计算机系统,而且对于用户选择适合自己需求的系统也极为重要。
执行时间和吞吐率
性能的评测可以从两个主要方面进行:执行时间和吞吐率。执行时间关注单个任务完成所需的时间,而吞吐率则关注单位时间内系统能完成多少任务。这两个指标反映了性能的不同方面,适用于不同的应用场景和需求。
基准测试程序(Benchmark)
为了客观、公正地评价计算机系统的性能,基准测试程序成为了一种普遍采用的方法。基准测试可以分为几种类型:
- 真实应用程序:这是最理想的测试,能够准确反映系统在实际使用中的性能。
- 核心测试程序:从真实应用中提取出来的关键代码片段。
- 小测试程序:由简单的、具体功能的小程序组成,如排序算法等。
- 合成测试程序:通过统计分析真实应用程序的行为,人工合成的旨在模拟真实应用行为的程序。
然而,简单或合成的测试程序可能无法全面反映计算机的性能,而且存在被特定设计优化的风险。因此,基于真实应用程序的基准测试套件,如SPEC(Standard Performance Evaluation Corporation)系列,成为了性能评测的黄金标准。
性能比较
性能比较通常涉及到计算和比较执行时间,吞吐率,或二者的综合考量。性能比较的关键在于如何公平、全面地反映不同系统的性能差异。这包括了使用统一的测试环境、相同的编译器设置,以及全面覆盖不同类型应用的测试套件。
总执行时间和平均执行时间
总执行时间是执行所有测试程序所需的时间总和,而平均执行时间则是所有测试程序执行时间的平均值。这两个指标提供了一个简单直观的性能比较方法,但可能无法完全反映所有性能方面的差异。
加权平均值
为了更准确地反映不同程序对用户重要性的不同,可以采用加权平均值来进行性能比较。这种方法通过给不同测试程序赋予不同的权重,能够更好地反映用户对性能的实际需求和评价标准。
结论
计算机系统的性能评测是一个综合性的过程,它需要考虑多种因素和指标。通过使用基准测试程序套件、公平地设置测试条件,以及采用加权平均值等方法,可以更准确地评估和比较不同计算机系统的性能。这不仅对系统设计者和制造商重要,对于最终用户来说,了解这些评测方法也有助于做出更明智的选择。