第二讲 找规律填数

问题引入: 

在数学中,如果给你一列数,让你根据这列数前后、上下的排列关系,寻找它们排列和变化的规律,再根据这样的规律,在这列数里填上适当的数,这样的问题我们叫做找规律填数。

找规律填数的一般方法是先观察分析,可以看前后两项的关系,也可以分组进行分析,有目的地对这列数中相邻的几个数依次进行相同的四则运算,再把计算的结果进行分析比较,从中找出排列的规律。找规律填数,既可以提高计算速度,又可以培养我们的观察能力。

王牌例1 

分析解答:

(1)仔细观察,可以发现4、8、12、16都是4的倍数,所以,第几个数就是4的几倍。因此,第5个数是(5×4=)20,第6个数是(6×4=)24;

(2)仔细观察,可以发现3,6、9、12都是3的倍数,所以第几个数就是3的几倍,因此,第5个数是(3x5=)15,第6个数是(3x6=118.(3)仔细观察,可以发现30、60、120、240.?.每相邻两数,后面的数,它前面数的2倍,因此,第5个数是(240x2=)480,第6个数是(482=)960。

(4)仔细观察,可以发现243、81,27、9、每相邻两数,前面的数是它后数的3倍,因此,第5个数是(9÷3=)3,第6个数是(3÷3=)1。

特别指导: 

找规律填数的关键是根据已知的数列找出数与数之间的规律。看相邻两数的倍数关系是常用的观察方法。

学到了什么? 

我的所得:

看法1:

从王牌例1中我学到了在观察一列数字的第一种思考的思路我们不妨把它称为思路1.即看前后项是否有倍数关系。

疑问1:

看到这里不禁联想到,小学时候老师常常说的数感,在奥数课上有不少天赋异禀的同学,每每老师出题其他人还在按照老师的方法按部就班的找规律时,他们往往快而准的找到数列的规律,我不禁有个疑问究竟什么是数感?

大师的看法:

大师的回答:

数感,或数学感觉,是一个关于理解和处理数学概念、问题和关系的直觉和洞察力的非正式术语。它不仅仅是计算能力,而是包括对数字、图形、空间和数学思维方式的深刻理解和敏感性。有良好数感的人能够直观地感知数学模式、关系和属性,甚至在进行详细计算之前就能对问题有一定的洞察。

数感的几个关键组成部分包括:

  1. 模式识别:能够在数字、形状或方程中识别出模式和规律,这是数感中最基本的能力之一。例如,在找规律填数的问题中,快速识别出数列的生成规律。

  2. 数学直觉:对数学问题有一种直觉上的理解,包括判断哪种方法可能是解决特定问题的最好方式,以及对结果的合理性有直觉上的判断。

  3. 估算和近似:能够快速准确地估算或近似计算结果,而不总是依赖精确计算。这包括对数量的感觉,如大小、比例和概率。

  4. 空间感知:在处理几何问题时,对形状、位置和空间关系的理解和直觉。

  5. 逻辑思维和推理:能够使用逻辑和推理来解决问题,包括归纳和演绎推理能力。

  6. 创造性思维:在面对数学问题时,能够创造性地思考,找到新的解决方法或理解复杂概念的新途径。

培养数感是一个逐步的过程,涉及大量的实践、探索和反思。它要求个体不仅仅是完成数学任务,而是要深入理解数学概念的本质,乐于探索和解决问题。一些方法可以帮助培养数感,比如多解决实际生活中的数学问题,玩逻辑和数学游戏,以及与他人讨论数学思想和策略。

尽管一些人似乎天生就有较强的数感,但多数人可以通过练习和正确的学习方法来培养和提高自己的数感。这就像培根所说,知识能塑造人的性格,通过学习和实践,我们可以提高自己的数学直觉和能力。

王牌例2

分析解答:

(1)从第二个数起,分别比前一个数大1.大2、大3、大.....3+1=4.4+2=6、6+3=99+4=13、13+5=18、18+6=24、247=31,所以横线上应分别填18、24、31;

2),这一列的例规律是:前一个数加4等于后一个数,助2(2+4=(16+1=10、10.8=1、14=18、18.4=12(12+4=126(26+4=130,所以横线上应分别填2、26、30

(3)从第一个数开始在次比前一个数大2.54. x大8、大16.....3,4=11209、(129+128=1237,所以横线上应分别真65、129.257;

(4)这一列爱的进列规律是前两个数的和等于后一个数,职9、12、(9+0=121、(12+21=13、(21+33=154、(33+54=187,所以横线上应分别填54所以横线上应分别填5和87;

(5)这一列数是由1开始的连续自然数按这样的规律组成的:数列第一项为1;第二、第三项均为2;第四、第五项均为3;第六项为4,下面连续两项为5,故这列数是每5个数为一组进行有规律排列的,即1、2、2、3、3,4、5、5、6、6;?..。故填6、6;

此题还可以这样填:把这列数分成两小列,即原数列的单项数为一列,2、3、5、6、...;双项数为一列,2、3、4、5、6,...。故填6、6

(6)这一列数的排列规律是:将前一个数的万位数移到最后一位便成下一个数,横线上应填81247、12478。

特别指导

看相邻两数的差也是填数常用的观察方法。

学到了什么?

我的所得:

方法2:

观察数列的思路2:看相邻两数的差也是填数的观察方法。

大师的评价:

确实,你提到的思路2——观察数列中相邻两数的差——是解决找规律填数问题时的一个非常有效的方法。这种方法特别适用于等差数列和其他线性增长或线性减少的数列,通过计算连续两项之间的差值,可以揭示数列的生成规律,进而预测和填写缺失的数值。下面是这种方法的一些关键点和它如何帮助理解数列的规律:

关键点

  1. 等差数列:如果相邻两数的差是常数,那么这个数列可能是等差数列。等差数列的每一项与前一项之间的差是相同的,这个差值被称为“公差”。

  2. 变化的差值:如果相邻两数的差值呈现出一定的变化模式(如逐渐增大或减小),这可能表明数列遵循着更复杂的增长或减少规律。这种模式的识别对于理解数列的结构非常关键。

  3. 应用范围:这种方法不仅适用于简单的线性问题,也可以扩展到更复杂的数列中,如那些差值遵循几何级数或其他数学关系的数列。

学到的要点

  • 数学直觉的培养:通过观察数列中相邻两项的差异,你可以培养对数列规律的直觉。这种直觉是数感的一个重要组成部分,有助于你在面对各种数学问题时做出快速判断。
  • 解题技巧的提升:掌握了这种方法后,你可以更快地识别和解决各种数列问题,提升解题效率和准确性。
  • 适用性广泛:这个方法不仅适用于找规律填数问题,也适用于更广泛的数学问题解决,比如在高中数学的序列与级数、初等数学的数列问题等领域。

通过对数列中相邻两数差值的观察和分析,你不仅可以发现数列的显而易见的规律,还可以挖掘出更深层次、更复杂的数学关系。这种能力是数学思维的核心,对于深入学习和应用数学都是非常有价值的。

王牌例三:

分析

这列数的井列规律:以第二个数开始,后一个数分别是前一

(2x3=)6

个数的1倍,2倍3倍,4倍5倍.....

这列数是

(6x4=124、(24x5=120、...横线上应填24。

特别指导:

通过研究几个数之间的关系,得出这列数后面的数与前面的数有倍数关系。 

我的所得:

这里其实可以用王牌例1得出的方法来解决就不再赘述了。

 

王牌例4:

分析解答

解这列数中,(18÷2=)9,(9+1=)10,(10÷2=)5,(5+1s)

6。第1个数除以2得第2个数,第2个数加上1得第3个数,第3个数除

以2得第4个数,第4个数加上1得第5个数,推出(6÷2=)3,(3+1%)

4。所以两个括号里分别填3、4。

18-29-+110÷25-+16÷23-+14

 我的所得:

在这道题里新的问题出现了,即前后两项不一定只有一个运算关系可能有多种运算关系组合而成,这里就是应用方法1和方法2,当然我们为了使得方法更加清晰,我们不妨把这个称为方法3。

方法3:前后项关系的时候要注意混合运算

王牌例5:

这里我们在第二题又遇到了一种新的情况,我们发现数列并非等比的即q不是恒定的而是成等差数列不断递增,我们得出方法4.

方法4:观察前后项关系的时候要注意是否存在递增等比数列的情况。

王牌例6:(幻方)

学到了什么?

我们又遇到了新的问题,在我看来这是这一讲最启发的一个题目,他告诉我怎么去求解幻方,小时候在求解的时候都是一个一个试但是这个方法太慢且数据大的时候容易错,那么这本书提出了解决这类问题的方法即统计法即采取统计的思想来解决。我们不妨把这种幻方问题分个类

幻方问题:

类型1:已经有部分幻方数字是已知的。

方法:通过找到那些数字满足和-已知数的次数

类型2:幻方没有一个输入

方法:通过枚举最大加数来统计数字出现的次数

大师的评价:

类型1:部分数字已知的幻方

在这种幻方问题中,一部分数字已经给定,剩余的数字需要填充进去。

解决方法:

  • 分析已知数字如何影响整个方阵的数字布局。
  • 根据已知的数字来推断剩余数字的位置。
  • 保证剩余的每一行、每一列及对角线加和符合幻方的总和。

类型2:空白幻方

这是一个更具挑战性的问题,没有任何数字作为起点。

解决方法:

  • 从最大的加数开始,统计每个数字出现的次数来分析它们在幻方中的位置。
  • 确定幻方的中心数字,因为它在幻方中只出现一次。
  • 将数字放入幻方中,确保每行、每列及对角线的和都相等。

对于更复杂的幻方,可能需要结合多种策略和技巧,包括但不限于统计法、几何对称性以及数学推理。这种系统性的方法不仅可以帮助我们解决幻方问题,还能在面对其他类型的逻辑和数学难题时提供帮助。

幻方游戏的C++实现:

幻方是一类非常有趣的数学问题,也是计算机科学中的经典问题之一。一个典型的编程问题可能是这样的:

问题: 编写一个C++程序来创建一个n x n的幻方,其中n是奇数。幻方是一个填充有不同整数的方阵,其中每个数字只用一次,且每行、每列和两个主对角线上的数字之和都相等。

解决方案思路:

  1. 初始化一个n x n的矩阵,全部填充为0。
  2. 将数字1放在第一行的中间位置。
  3. 按照以下规则放置剩下的n*n - 1个数字(从2到n*n):
    • 将每个新数字放置在前一个数字的右上方(行减1,列加1)。
    • 如果这个位置已经超出了上边界,但没有超出右边界,就把数字放到底部同一列。
    • 如果这个位置已经超出了右边界,但没有超出上边界,就把数字放在最左边同一行。
    • 如果数字需要放置在右上角的对角线之外,就把它放在它下面的单元格中。
    • 如果当前位置已经被占据,就把它放在它下面的单元格中。
  4. 当所有数字都放置完毕,打印出这个幻方。

现在,让我们用C++来实现这个解决方案。这个算法被称为“Siamese method”或“method of De la Loubere”。下面是C++代码实现的例子:

#include <iostream>
#include <vector>

void printMagicSquare(const std::vector<std::vector<int>>& magicSquare) {
    for (const auto& row : magicSquare) {
        for (int num : row) {
            std::cout << num << '\t';
        }
        std::cout << '\n';
    }
}

std::vector<std::vector<int>> generateMagicSquare(int n) {
    std::vector<std::vector<int>> magicSquare(n, std::vector<int>(n, 0));

    int num = 1;
    int i = 0;
    int j = n / 2;  // Start from the middle of the first row

    while (num <= n * n) {
        if (i < 0 && j >= n) {
            i += 2;
            j--;
        } else {
            if (i < 0) i = n - 1;
            if (j == n) j = 0;
        }
        if (magicSquare[i][j] != 0) {
            i += 2;
            j--;
            continue;
        } else {
            magicSquare[i][j] = num++;
        }
        i--;
        j++;
    }

    return magicSquare;
}

int main() {
    int n;
    std::cout << "Enter the size of the Magic Square (must be odd): ";
    std::cin >> n;

    if (n % 2 == 0) {
        std::cout << "Size must be an odd number." << std::endl;
        return 1;
    }

    std::vector<std::vector<int>> magicSquare = generateMagicSquare(n);

    std::cout << "Magic Square of size " << n << ":\n\n";
    printMagicSquare(magicSquare);

    return 0;
}

此代码创建了一个奇数大小的幻方,并打印出来。代码中的generateMagicSquare函数实现了幻方的生成规则,printMagicSquare函数则用于打印幻方。在main函数中,我们接受用户输入的幻方大小,并调用这些函数来生成和打印幻方。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值